Esquirol, E. Treatise on Insanity, Translation from French (Lean and Blanchard, 1845).
Luigjes, J. et al. Defining compulsive behavior. Neuropsychol. Rev. 29, 4–13 (2019). A detailed critique of the compulsivity construct, taking into account several operational definitions, and unusually highlighting and integrating its subjective, behavioural and maladaptive components.
Google Scholar
Stein, D. J. et al. Obsessive-compulsive disorder: diagnostic and treatment issues. Psychiatr. Clin. North Am. 32, 665–685 (2009).
Google Scholar
APA. The Diagnostic and Statistical Manual of Mental Disorders: DSM 5 (APA, 2013).
Genetti Gatfield, M., Peron, J., Medlin, F., Annoni, J. M. & Accolla, E. A. Compulsions without obsession following stroke. Neuropsychologia 162, 108050 (2021).
Google Scholar
Mitchell, E., Tavares, T. P., Palaniyappan, L. & Finger, E. C. Hoarding and obsessive-compulsive behaviours in frontotemporal dementia: clinical and neuroanatomic associations. Cortex 121, 443–453 (2019).
Google Scholar
Bostwick, J. M., Hecksel, K. A., Stevens, S. R., Bower, J. H. & Ahlskog, J. E. Frequency of new-onset pathologic compulsive gambling or hypersexuality after drug treatment of idiopathic Parkinson disease. Mayo Clin. Proc. 84, 310–316 (2009).
Google Scholar
Djamshidian, A., Averbeck, B. B., Lees, A. J. & O’Sullivan, S. S. Clinical aspects of impulsive compulsive behaviours in Parkinson’s disease. J. Neurol. Sci. 310, 183–188 (2011).
Google Scholar
Tiego, J. et al. Measuring compulsivity as a self-reported multidimensional transdiagnostic construct: large-scale (N = 182,000) validation of the Cambridge–Chicago compulsivity trait scale. Assessment 30, 2433–2448 (2023).
Google Scholar
Chamberlain, S. R. & Grant, J. E. Initial validation of a transdiagnostic compulsivity questionnaire: the Cambridge–Chicago Compulsivity Trait Scale. CNS Spectr. 23, 340–346 (2018).
Google Scholar
Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S. & Ersche, K. D. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16, 81–91 (2012).
Google Scholar
Khalsa, S. S. et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501–513 (2018).
Google Scholar
Koob, G. F. Anhedonia, hyperkatifeia, and negative reinforcement in substance use disorders. Curr. Top. Behav. Neurosci. 58, 147–165 (2022).
Google Scholar
Koob, G. F., Powell, P. & White, A. Addiction as a coping response: hyperkatifeia, deaths of despair, and COVID-19. Am. J. Psychiatry 177, 1031–1037 (2020). A classic application and extension of the negative reinforcement principle to compulsive behaviour in drug addiction, focusing on the role of the negative affective state in alcohol and opioid drug use disorders.
Google Scholar
Stein, D. J. et al. Obsessive-compulsive disorder. Nat. Rev. Dis. Primers https://doi.org/10.1038/s41572-019-0102-3 (2019).
Tiffany, S. T. & Carter, B. L. Is craving the source of compulsive drug use? J. Psychopharmacol. 12, 23–30 (1998).
Google Scholar
Guillen-Font, M. A. et al. Insight in obsessive-compulsive disorder: relationship with sociodemographic and clinical characteristics. J. Psychiatr. Pract. 27, 427–438 (2021).
Google Scholar
Cervin, M. et al. Towards a definitive symptom structure of obsessive-compulsive disorder: a factor and network analysis of 87 distinct symptoms in 1366 individuals. Psychol. Med. 52, 3267–3279 (2022).
Google Scholar
Andrews-McClymont, J. G., Lilienfeld, S. O. & Duke, M. P. Evaluating an animal model of compulsive hoarding in humans. Rev. Gen. Psychol. 17, 399–419 (2013).
Google Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. & Baler, R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr. Top. Behav. Neurosci. 11, 1–24 (2012).
Google Scholar
Velazquez-Sanchez, C. et al. High trait impulsivity predicts food addiction-like behavior in the rat. Neuropsychopharmacology 39, 2463–2472 (2014).
Google Scholar
Godier, L. R. & Park, R. J. Does compulsive behavior in anorexia nervosa resemble an addiction? A qualitative investigation. Front. Psychol. 6, 1608 (2015).
Google Scholar
D’Angelo, L.-S. et al. Animal models of obsessive-compulsive spectrum disorders. CNS Spectr. 19, 28–49 (2014).
Google Scholar
Brett, L. P. & Levine, S. Schedule-induced polydipsia suppresses pituitary-adrenal activity in rats. J. Comp. Physiol. Psychol. 93, 946–956 (1979).
Google Scholar
Falk, J. Production of polydipsia in normal rats by an intermittent food schedule. Science 133, 195–196 (1961).
Google Scholar
Dundas, B., Harris, M. & Narasimhan, M. Psychogenic polydipsia review: etiology, differential, and treatment. Curr. Psychiatry Rep. 9, 236–241 (2007).
Google Scholar
Tolomeo, S., Macfarlane, J. A., Baldacchino, A., Koob, G. F. & Steele, J. D. Alcohol binge drinking: negative and positive valence system abnormalities. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 126–134 (2021).
Google Scholar
Wolffgramm, J. & Heyne, A. From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav. Brain Res. 70, 77–94 (1995). An early seminal demonstration of compulsive alcohol drinking.
Google Scholar
Marti-Prats, L. et al. Baclofen decreases compulsive alcohol drinking in rats characterized by reduced levels of GAT-3 in the central amygdala. Addict. Biol. 26, e13011 (2021).
Google Scholar
Belin-Rauscent, A., Fouyssac, M., Bonci, A. & Belin, D. How preclinical models evolved to resemble the diagnostic criteria of drug addiction. Biol. Psychiatry 79, 39–46 (2016).
Google Scholar
Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).
Google Scholar
Jones, J. A. et al. Neurobehavioral precursors of compulsive cocaine seeking in dual frontostriatal circuits. Biol. Psychiatry Glob. Open Sci. 4, 194–202 (2023).
Google Scholar
Giuliano, C., Belin, D. & Everitt, B. J. Compulsive alcohol seeking results from a failure to disengage dorsolateral striatal control over behavior. J. Neurosci. 39, 1744–1754 (2019).
Google Scholar
Giuliano, C. et al. Evidence for a long-lasting compulsive alcohol seeking phenotype in rats. Neuropsychopharmacology 43, 728–738 (2018).
Google Scholar
Everitt, B. J. Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci. Biobehav. Rev. 14, 217–232 (1990).
Google Scholar
Robbins, T. W. Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant-drugs. Nature 264, 57–59 (1976).
Google Scholar
Thorndike, E. L. The law of effect. Am. J. Psychol. 39, 212–222 (1927).
Google Scholar
Olds, J. & Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954).
Google Scholar
Pascoli, V. et al. Cell-type specific synaptic plasticity in dorsal striatum is associated with punishment-resistance compulsive-like cocaine self-administration in mice. Neuropsychopharmacology 48, 448–458 (2023).
Google Scholar
Harada, M., Pascoli, V., Hiver, A., Flakowski, J. & Lüscher, C. Cortico-striatal activity driving compulsive reward-seeking. Biol. Psychiatry 90, 808–818 (2021).
Google Scholar
Lüscher, C., Robbins. T. W., & Everitt, B. J. The transition to compulsion in addiction. Nat. Rev. Neurosci. 21, 247–263 (2020).
Google Scholar
Heath, R. G. Electrical self-stimulation of the brain in man. Am. J. Psychiatry 120, 571–577 (1963).
Google Scholar
Taylor, J. R. & Robbins, T. W. 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology 90, 390–397 (1986).
Google Scholar
Robbins, T. W. & Costa, R. M. Habits. Curr. Biol. 27, R1200–R1206 (2017).
Google Scholar
Dickinson, A. Actions and habits: the development of behavioural autonomy. Philos. Trans. R. Soc. Lond. B 308, 67–78 (1985).
Google Scholar
Marti-Prats, L. et al. The development of compulsive coping behavior depends on dorsolateral striatum dopamine-dependent mechanisms. Mol. Psychiatry 28, 4666–4678 (2023).
Google Scholar
Belin, D., Economidou, D., Pelloux, Y. & Everitt, B. J. Habit formation and compulsion. Anim. Model. Drug Addiction 53, 337–378 (2011).
Google Scholar
Jentsch, J. D. & Taylor, J. R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146, 373–390 (1999).
Google Scholar
Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H. & Holmes, A. The neural basis of reversal learning: an updated perspective. Neuroscience 345, 12–26 (2017).
Google Scholar
Clarke, H. F., Dalley, J. W., Crofts, H. S., Robbins, T. W. & Roberts, A. C. Cognitive inflexibility after prefrontal serotonin depletion. Science 304, 878–880 (2004).
Google Scholar
Taylor, J. R. & Robbins, T. W. Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84, 405–412 (1984).
Google Scholar
Fouyssac, M. et al. Negative urgency exacerbates relapse to cocaine seeking after abstinence. Biol. Psychiatry 91, 1051–1060 (2022).
Google Scholar
Belin, D., Belin-Rauscent, A., Murray, J. E. & Everitt, B. J. Addiction: failure of control over maladaptive incentive habits. Curr. Opin. Neurobiol. 23, 564–572 (2013).
Google Scholar
Belin, D. & Everitt, B. J. in Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 13 (eds Heinz, S. & Kuei, T.) 571–592 (Elsevier, Academic, 2010).
Everitt, B. J. & Robbins, T. W. Drug addiction: updating actions to habits to compulsions ten years on. Annu. Rev. Psychol. 67, 23–50 (2016).
Google Scholar
Robbins, T. W., Vaghi, M. M. & Banca, P. Obsessive-compulsive disorder: puzzles and prospects. Neuron 102, 27–47 (2019).
Google Scholar
Gillan, C. M. et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol. Psychiatry 75, 631–638 (2014).
Google Scholar
Schwabe, L. & Wolf, O. T. Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of action. Behav. Brain Res. 219, 321–328 (2011).
Google Scholar
Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325, 621–625 (2009).
Google Scholar
Doll, B. B., Shohamy, D. & Daw, N. D. Multiple memory systems as substrates for multiple decision systems. Neurobiol. Learn. Mem. 117, 4–13 (2015).
Google Scholar
Dayan, P. & Daw, N. D. Decision theory, reinforcement learning, and the brain. Cogn. Affect. Behav. Neurosci. 8, 429–453 (2008).
Google Scholar
Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol. Psychiatry 20, 345–352 (2015).
Google Scholar
Menon, V. & D’Esposito, M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47, 90–103 (2022).
Google Scholar
Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).
Google Scholar
Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000).
Google Scholar
Hardwick, R. M., Forrence, A. D., Krakauer, J. W. & Haith, A. M. Time-dependent competition between goal-directed and habitual response preparation. Nat. Hum. Behav. 3, 1252–1262 (2019). Describes a striking new human test paradigm for examining factors influencing the balance between goal-directed and habitual responding based on concepts in motor control and showing that the two systems act in parallel from early in training rather than the emergence of habits depending on the training duration.
Google Scholar
Jones, C. L., Minati, L., Harrison, N. A., Ward, J. & Critchley, H. D. Under pressure: response urgency modulates striatal and insula activity during decision-making under risk. PLoS ONE 6, e20942 (2011).
Google Scholar
Zorrilla, E. P. & Koob, G. F. Impulsivity derived from the dark side: neurocircuits that contribute to negative urgency. Front. Behav. Neurosci. 13, 136 (2019).
Google Scholar
Um, M., Hummer, T. A. & Cyders, M. A. Relationship of negative urgency to cingulo-insular and cortico-striatal resting state functional connectivity in tobacco use. Brain Imaging Behav. 14, 1921–1932 (2020).
Google Scholar
Lee, S. W., Shimojo, S. & O’Doherty, J. P. Neural computations underlying arbitration between model-based and model-free learning. Neuron 81, 687–699 (2014). Describes a new method for measuring arbitration between goal-directed and habitual behaviour based on the model-based/model-free paradigm, and uses it to delineate neural mechanisms underlying this capacity using functional MRI.
Google Scholar
Gruner, P., Anticevic, A., Lee, D. & Pittenger, C. Arbitration between action strategies in obsessive-compulsive disorder. Neuroscientist 22, 188–198 (2016). Imaginative application of the hypothesis of arbitration between goal-directed and habitual behaviour to obsessive-compulsive disorder — raising the intriguing possibility that this process may be impaired rather than goal-directed and habit systems per se.
Google Scholar
Ruan, Z. et al. Impairment of arbitration between model-based and model-free reinforcement learning in obsessive-compulsive disorder. Front. Psychiatry 14, 1162800 (2023).
Google Scholar
Seok, D. et al. Neurocircuit dynamics of arbitration between decision-making strategies across obsessive-compulsive and related disorders. NeuroImage Clin. 35, 103073 (2022).
Google Scholar
Strauss, A. Y. et al. Why check? A meta-analysis of checking in obsessive-compulsive disorder: threat vs. distrust of senses. Clin. Psychol. Rev. 75, 101807 (2020).
Google Scholar
Fradkin, I., Adams, R. A., Parr, T., Roiser, J. P. & Huppert, J. D. Searching for an anchor in an unpredictable world: a computational model of obsessive compulsive disorder. Psychol. Rev. 127, 672–699 (2020). This innovative theoretical paper provides a new computational model of behavioural processes underlying obsessive-compulsive disorder focusing on contamination and compulsive washing behaviour, based on the idea that patients with obsessive-compulsive disorder have special difficulties in state transitions in behaviour. These difficulties are hypothesized to be enhanced under conditions of environmental volatility and unpredictability, whereas in familiar circumstances, habitual behaviour predominates.
Google Scholar
Velazquez-Sanchez, C., Muresan, L., Marti-Prats, L. & Belin, D. The development of compulsive coping behaviour is associated with a downregulation of Arc in a locus coeruleus neuronal ensemble. Neuropsychopharmacology 48, 653–663 (2023).
Google Scholar
Koob, G. F. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).
Google Scholar
Rauch, S. L. et al. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry 51, 62–70 (1994). The culmination of a series of seminal articles using positron emission tomography to analyse the activity of the orbitofrontal cortex, anterior cingulate cortex and caudate nucleus in obsessive-compulsive disorder, through the metabolic activity of these regions. A special aspect of this study was the use of a symptom provocation design.
Google Scholar
Saxena, S., Brody, A. L., Schwartz, J. M. & Baxter, L. R. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br. J. Psychiatry 173 (suppl. 35), 26–37 (1998).
Google Scholar
Rauch, S. Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology 27, 782–791 (2002).
Google Scholar
Graybiel, A. M. & Rauch, S. L. Toward a neurobiology of obsessive-compulsive disorder. Neuron 28, 343–347 (2000).
Google Scholar
Breiter, H. C. et al. Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch. Gen. Psychiatry 53, 595–606 (1996).
Google Scholar
Beucke, J. C. et al. Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiatry 70, 619–629 (2013).
Google Scholar
Meunier, D. et al. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder. NeuroImage 59, 1461–1468 (2012).
Google Scholar
Balleine, B. W. & O’Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).
Google Scholar
Ersche, K. D. et al. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134, 2013–2024 (2011).
Google Scholar
Kang, D. H. et al. Volumetric investigation of the frontal-subcortical circuitry in patients with obsessive-compulsive disorder. J. Neuropsychiatry Clin. Neurosci. 16, 342–349 (2004).
Google Scholar
Atmaca, M. et al. Volumetric MRI assessment of brain regions in patients with refractory obsessive-compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 1051–1057 (2006).
Google Scholar
Yang, Z. et al. A multimodal meta-analysis of regional functional and structural brain abnormalities in obsessive-compulsive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 274, 165–180 (2023).
Google Scholar
de Vries, F. E. et al. Compensatory frontoparietal activity during working memory: an endophenotype of obsessive-compulsive disorder. Biol. Psychiatry 76, 878–887 (2014).
Google Scholar
Rolls, E. T. The Orbitofrontal Cortex (Oxford Univ. Press, 2019).
Hervig, M. E. et al. Dissociable and paradoxical roles of rat medial and lateral orbitofrontal cortex in visual serial reversal learning. Cereb. Cortex 30, 1016–1029 (2020).
Google Scholar
Zald, D. & Rauch, S. (eds.) The Orbitofrontal Cortex (Oxford Univ. Press, 2006).
Jung, W. H. et al. Abnormal corticostriatal-limbic functional connectivity in obsessive-compulsive disorder during reward processing and resting-state. NeuroImage Clin. 3, 27–38 (2013).
Google Scholar
Haber, S. N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21 (2016).
Google Scholar
Anticevic, A. et al. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol. Psychiatry 75, 595–605 (2014).
Google Scholar
Harrison, B. J. et al. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch. Gen. Psychiatry 66, 1189–1200 (2009).
Google Scholar
Hou, J. M. et al. Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. J. Psychiatry Neurosci. 39, 304–311 (2014).
Google Scholar
Naze, S. et al. Mechanisms of imbalanced frontostriatal functional connectivity in obsessive-compulsive disorder. Brain 146, 1322–1327 (2023).
Google Scholar
Figee, M. et al. Compulsivity in obsessive-compulsive disorder and addictions. Eur. Neuropsychopharmacol. 26, 856–868 (2016).
Google Scholar
Xu, C. et al. Imbalance in functional and structural connectivity underlying goal-directed and habitual learning systems in obsessive-compulsive disorder. Cereb. Cortex 32, 3690–3705 (2022).
Google Scholar
Ersche, K. D. et al. Brain networks underlying vulnerability and resilience to drug addiction. Proc. Natl Acad. Sci. USA 117, 15253–15261 (2020).
Google Scholar
Ziegler, G. et al. Compulsivity and impulsivity traits linked to attenuated developmental frontostriatal myelination trajectories. Nat. Neurosci. 22, 992–999 (2019).
Google Scholar
Akkermans, S. E. A. et al. Frontostriatal functional connectivity correlates with repetitive behaviour across autism spectrum disorder and obsessive-compulsive disorder. Psychol. Med. 49, 2247–2255 (2019).
Google Scholar
Radua, J., van den Heuvel, O. A., Surguladze, S. & Mataix-Cols, D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch. Gen. Psychiatry 67, 701–711 (2010).
Google Scholar
Norman, L. J. et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: a comparative meta-analysis. JAMA Psychiatry 73, 815–825 (2016).
Google Scholar
Vaghi, M. M. et al. Hypoactivation and dysconnectivity of a frontostriatal circuit during goal-directed planning as an endophenotype for obsessive-compulsive disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 655–663 (2017).
Google Scholar
Vaghi, M. M. et al. Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol. Psychiatry 81, 708–717 (2017).
Google Scholar
Soriano-Mas, C. Functional brain imaging and OCD. Curr. Top. Behav. Neurosci. 49, 269–300 (2021).
Google Scholar
Ersche, K. D. et al. Response perseveration in stimulant dependence is associated with striatal dysfunction and can be ameliorated by a D(2/3) receptor agonist. Biol. Psychiatry 70, 754–762 (2011).
Google Scholar
Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669 (2011).
Google Scholar
Chamberlain, S. et al. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science 321, 421–422 (2008).
Google Scholar
van den Heuvel, O. A. et al. Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch. Gen. Psychiatry 62, 301–309 (2005).
Google Scholar
Gu, B. M. et al. Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain 131, 155–164 (2008).
Google Scholar
de Wit, S. J. et al. Presupplementary motor area hyperactivity during response inhibition: a candidate endophenotype of obsessive-compulsive disorder. Am. J. Psychiatry 169, 1100–1108 (2012).
Google Scholar
Vaghi, M. M. et al. Compulsivity is linked to reduced adolescent development of goal-directed control and frontostriatal functional connectivity. Proc. Natl Acad. Sci. USA 117, 25911–25922 (2020).
Google Scholar
Kim, D., Park, G. Y., JP, O. D. & Lee, S. W. Task complexity interacts with state-space uncertainty in the arbitration between model-based and model-free learning. Nat. Commun. 10, 5738 (2019).
Google Scholar
Weissengruber, S., Lee, S. W., O’Doherty, J. P. & Ruff, C. C. Neurostimulation reveals context-dependent arbitration between model-based and model-free reinforcement learning. Cereb. Cortex 29, 4850–4862 (2019).
Google Scholar
Gillan, C. M. et al. Functional neuroimaging of avoidance habits in obsessive-compulsive disorder. Am. J. Psychiatry 172, 284–293 (2015).
Google Scholar
Hauser, T. U. et al. Increased fronto-striatal reward prediction errors moderate decision making in obsessive-compulsive disorder. Psychol. Med. 47, 1246–1258 (2017).
Google Scholar
Apergis-Schoute, A. M. et al. Neural basis of impaired safety signaling in obsessive compulsive disorder. Proc. Natl Acad. Sci. USA 114, 3216–3221 (2017).
Google Scholar
Murray, G. K. et al. Dopaminergic drug treatment remediates exaggerated cingulate prediction error responses in obsessive-compulsive disorder. Psychopharmacology 236, 2325–2336 (2019).
Google Scholar
Sunol, M. et al. Differential patterns of brain activation between hoarding disorder and obsessive-compulsive disorder during executive performance. Psychol. Med. 50, 666–673 (2020).
Google Scholar
Mataix-Cols, D. et al. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch. Gen. Psychiatry 61, 564–576 (2004).
Google Scholar
Banca, P. et al. Imbalance in habitual versus goal directed neural systems during symptom provocation in obsessive-compulsive disorder. Brain 138, 798–811 (2015).
Google Scholar
Klugah-Brown, B. et al. Common neurofunctional dysregulations characterize obsessive-compulsive, substance use, and gaming disorders — an activation likelihood meta-analysis of functional imaging studies. Addict. Biol. 26, e12997 (2021).
Google Scholar
Klugah‐Brown, B. et al. Common abnormality of gray matter integrity in substance use disorder and obsessive‐compulsive disorder: a comparative voxel‐based meta‐analysis. Hum. Brain Mapp. 42, 3871–3886 (2021).
Google Scholar
Conti, A. A. & Baldacchino, A. M. Early-onset smoking theory of compulsivity development: a neurocognitive model for the development of compulsive tobacco smoking. Front. Psychiatry 14, 1209277 (2023).
Google Scholar
Koban, L., Wager, T. D. & Kober, H. A neuromarker for drug and food craving distinguishes drug users from non-users. Nat. Neurosci. 26, 316–325 (2023).
Google Scholar
Naqvi, N. H., Rudrauf, D., Damasio, H. & Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science 315, 531–534 (2007).
Google Scholar
Schienle, A., Potthoff, J. & Wabnegger, A. Voxel-based morphometry analysis of structural brain scans in skin-picking disorder. Compr. Psychiatry 84, 82–86 (2018).
Google Scholar
Jones, R. & Bhattacharya, J. Alpha activity in the insula accompanies the urge to neutralize in sub-clinical obsessive-compulsive participants. J. Behav. Addict. 1, 96–105 (2012).
Google Scholar
Jackson, S. R., Parkinson, A., Kim, S. Y., Schuermann, M. & Eickhoff, S. B. On the functional anatomy of the urge-for-action. Cogn. Neurosci. 2, 227–243 (2011).
Google Scholar
Bruin, W. B. et al. The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Mol. Psychiatry 28, 4307–4319 (2023).
Google Scholar
Miquel, M., Nicola, S. M., Gil-Miravet, I., Guarque-Chabrera, J. & Sanchez-Hernandez, A. A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Front. Behav. Neurosci. 13, 99 (2019).
Google Scholar
Kubota, Y. et al. Putamen volume correlates with obsessive compulsive characteristics in healthy population. Psychiatry Res. Neuroimaging 249, 97–104 (2016).
Google Scholar
Hollander, E. et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol. Psychiatry 58, 226–232 (2005).
Google Scholar
Wang, A. R. et al. Human habit neural circuitry may be perturbed in eating disorders. Sci. Transl. Med. 15, eabo4919 (2023).
Google Scholar
Ersche, K. D. et al. Reduced glutamate turnover in the putamen is linked with automatic habits in human cocaine addiction. Biol. Psychiatry 89, 970–979 (2021).
Google Scholar
Biria, M. et al. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat. Commun. 14, 3324 (2023).
Google Scholar
Duan, L. Y. et al. Controlling one’s world: identification of sub-regions of primate PFC underlying goal-directed behavior. Neuron 109, 2485–2498.e5 (2021).
Google Scholar
Garner, J. P., Weisker, S. M., Dufour, B. & Mench, J. A. Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp. Med. 54, 216–224 (2004).
Google Scholar
Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).
Google Scholar
Ullrich, M. et al. OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency. Mol. Psychiatry 23, 444–458 (2018).
Google Scholar
Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).
Google Scholar
Wan, Y. et al. Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. Biol. Psychiatry 75, 623–630 (2014).
Google Scholar
Corbit, V. L., Manning, E. E., Gittis, A. H. & Ahmari, S. E. Strengthened inputs from secondary motor cortex to striatum in a mouse model of compulsive behavior. J. Neurosci. 39, 2965–2975 (2019).
Google Scholar
Lei, H., Lai, J., Sun, X., Xu, Q. & Feng, G. Lateral orbitofrontal dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. J. Psychiatry Neurosci. 44, 120–131 (2019).
Google Scholar
Manning, E. E., Geramita, M. A., Piantadosi, S. C., Pierson, J. L. & Ahmari, S. E. Distinct patterns of abnormal lateral orbitofrontal cortex activity during compulsive grooming and reversal learning normalize after fluoxetine. Biol. Psychiatry 93, 989–999 (2023).
Google Scholar
van den Boom, B. J. G. et al. Unraveling the mechanisms of deep-brain stimulation of the internal capsule in a mouse model. Nat. Commun. 14, 5385 (2023).
Google Scholar
Yang, Z. et al. Dysfunction of orbitofrontal GABAergic interneurons leads to impaired reversal learning in a mouse model of obsessive-compulsive disorder. Curr. Biol. 31, 381–393.e4 (2021).
Google Scholar
Piantadosi, S. C. et al. Hyperactivity of Indirect Pathway-Projecting Spiny Projection Neurons Drives Compulsive Behavior (Cold Spring Harbor Laboratory, 2022).
Apergis-Schoute, A. M. et al. Perseveration and shifting in obsessive-compulsive disorder as a function of uncertainty, punishment, and serotonergic medication. Biol. Psychiatry Global Open Sci. https://doi.org/10.1016/j.bpsgos.2023.06.004 (2024).
Milton, L. K. et al. Suppression of Cortico-Striatal Circuit Activity Improves Cognitive Flexibility and Prevents Body Weight Loss in Activity-Based Anorexia in Rats (Cold Spring Harbor Laboratory, 2020).
Burguiere, E., Monteiro, P., Feng, G. & Graybiel, A. M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340, 1243–1246 (2013). Seminal use of optogenetic techniques in a prominent genetic (Dlgap3) mouse model of obsessive-compulsive disorder to restore control over compulsive grooming behaviour.
Google Scholar
Ahmari, S. E. et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340, 1234–1239 (2013). Seminal use of optogenetic techniques in a prominent genetic (Dlgap3) mouse model of obsessive-compulsive disorder to simulate symptom provocation via orbitofrontal-striatal pathways, leading to compulsive grooming behaviour.
Google Scholar
Lamothe, H. et al. The Sapap3(−/−) mouse reconsidered as a comorbid model expressing a spectrum of pathological repetitive behaviours. Transl. Psychiatry 13, 26 (2023).
Google Scholar
Belin-Rauscent, A. et al. From impulses to maladaptive actions: the insula is a neurobiological gate for the development of compulsive behavior. Mol. Psychiatry 21, 491–499 (2016).
Google Scholar
Fouyssac, M. et al. Environment-dependent behavioral traits and experiential factors shape addiction vulnerability. Eur. J. Neurosci. 53, 1794–1808 (2021).
Google Scholar
Navarro, S. V. et al. Behavioral biomarkers of schizophrenia in high drinker rats: a potential endophenotype of compulsive neuropsychiatric disorders. Schizophr. Bull. 43, 778–787 (2017).
Google Scholar
Robbins, T. W. & Koob, G. F. Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285, 409–412 (1980).
Google Scholar
Ansquer, S. et al. Atomoxetine decreases vulnerability to develop compulsivity in high impulsive rats. Biol. Psychiatry 75, 825–832 (2014).
Google Scholar
Mora, S., Merchan, A., Aznar, S., Flores, P. & Moreno, M. Increased amygdala and decreased hippocampus volume after schedule-induced polydipsia in high drinker compulsive rats. Behav. Brain Res. 390, 112592 (2020).
Google Scholar
Merchan, A. et al. Excessive habit formation in schedule-induced polydipsia: microstructural analysis of licking among rat strains and involvement of the orbitofrontal cortex. Genes Brain Behav. 18, e12489 (2019).
Google Scholar
Moreno, M. et al. Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology 219, 661–672 (2012).
Google Scholar
Mora, S. et al. Reduced cortical serotonin 5-HT2A receptor binding and glutamate activity in high compulsive drinker rats. Neuropharmacology 143, 10–19 (2018).
Google Scholar
Mills, I. H. & Medlicott, L. Anorexia nervosa as a compulsive behaviour disease. Q. J. Med. 83, 507–522 (1992).
Google Scholar
Moore, C. F., Sabino, V., Koob, G. F. & Cottone, P. Neuroscience of compulsive eating behavior. Front. Neurosci. 11, 469 (2017).
Google Scholar
Beneke, W. M., Schulte, S. E. & vander Tuig, J. G. An analysis of excessive running in the development of activity anorexia. Physiol. Behav. 58, 451–457 (1995).
Google Scholar
Price, A. E., Stutz, S. J., Hommel, J. D., Anastasio, N. C. & Cunningham, K. A. Anterior insula activity regulates the associated behaviors of high fat food binge intake and cue reactivity in male rats. Appetite 133, 231–239 (2019).
Google Scholar
Furlong, T. M., Jayaweera, H. K., Balleine, B. W. & Corbit, L. H. Binge-like consumption of a palatable food accelerates habitual control of behavior and is dependent on activation of the dorsolateral striatum. J. Neurosci. 34, 5012–5022 (2014).
Google Scholar
Hildebrandt, B. A., Fisher, H., LaPalombara, Z., Young, M. E. & Ahmari, S. E. Corticostriatal dynamics underlying components of binge-like consumption of palatable food in mice. Appetite 183, 106462 (2023).
Google Scholar
Vousden, G. H., Paulcan, S., Robbins, T. W., Eagle, D. M. & Milton, A. L. Checking responses of goal- and sign-trackers are differentially affected by threat in a rodent analog of obsessive-compulsive disorder. Learn. Mem. 27, 190–200 (2020).
Google Scholar
Eagle, D. M. et al. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: a novel possible model of OCD. Behav. Brain Res. 264, 207–229 (2014).
Google Scholar
d’Angelo, C., Eagle, D. M., Coman, C. M. & Robbins, T. W. Role of the medial prefrontal cortex and nucleus accumbens in an operant model of checking behaviour and uncertainty. Brain Neurosci. Adv. 1, 2398212817733403 (2017).
Google Scholar
Martinez-Rivera, F. J. et al. A novel insular/orbital-prelimbic circuit that prevents persistent avoidance in a rodent model of compulsive behavior. Biol. Psychiatry 93, 1000–1009 (2023).
Google Scholar
Hu, Y. Z. et al. Compulsive drug use is associated with imbalance of orbitofrontal- and prelimbic-striatal circuits in punishment-resistant individuals. Proc. Natl Acad. Sci. USA 116, 9066–9071 (2019).
Google Scholar
Chen, B. T. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496, 359–362 (2013).
Google Scholar
Jadhav, K. S. et al. Reversing anterior insular cortex neuronal hypoexcitability attenuates compulsive behavior in adolescent rats. Proc. Natl Acad. Sci. USA 119, e2121247119 (2022).
Google Scholar
Spierling, S. et al. Insula to ventral striatal projections mediate compulsive eating produced by intermittent access to palatable food. Neuropsychopharmacology 45, 579–588 (2020).
Google Scholar
Chen, Y. et al. An orbitofrontal cortex–anterior insular cortex circuit gates compulsive cocaine use. Sci. Adv. 8, eabq5745 (2022). A seminal study using multimodal neurobiological methods to highlight the role of the anterior insula in individual differences in a model of compulsive cocaine taking in rats. Chemogenetic manipulation of activity of this region is shown bidirectionally to regulate this behaviour.
Google Scholar
Pelloux, Y., Dilleen, R., Economidou, D., Theobald, D. & Everitt, B. J. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology 37, 2505–2514 (2012).
Google Scholar
Hodebourg, R. et al. Heroin seeking becomes dependent on dorsal striatal dopaminergic mechanisms and can be decreased by N-acetylcysteine. Eur. J. Neurosci. 50, 2036–2044 (2019).
Google Scholar
Belin, D. & Everitt, B. J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008).
Google Scholar
Giuliano, C., Puaud, M., Cardinal, R. N., Belin, D. & Everitt, B. J. Individual differences in the engagement of habitual control over alcohol seeking predict the development of compulsive alcohol seeking and drinking. Addict. Biol. 26, e13041 (2021).
Google Scholar
Augier, E. et al. A molecular mechanism for choosing alcohol over an alternative reward. Science 360, 1321–1326 (2018).
Google Scholar
Halladay, L. R. et al. Prefrontal regulation of punished ethanol self-administration. Biol. Psychiatry 87, 967–978 (2020).
Google Scholar
Murray, J. E., Belin, D. & Everitt, B. J. Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 37, 2456–2466 (2012).
Google Scholar
Everitt, B. J., Giuliano, C. & Belin, D. Addictive behaviour in experimental animals: prospects for translation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170027 (2018).
Google Scholar
Ersche, K. D. et al. Carrots and sticks fail to change behavior in cocaine addiction. Science 352, 1468–1471 (2016).
Google Scholar
Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408 (2003).
Google Scholar
Coutureau, E. & Killcross, S. Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav. Brain Res. 146, 167–174 (2003).
Google Scholar
Duan, Y. et al. Compulsive drug-taking is associated with habenula–frontal cortex connectivity. Proc. Natl Acad. Sci. USA 119, e2208867119 (2022).
Google Scholar
Chen, C., Hsu, F. C., Li, C. W. & Huang, M. C. Structural, functional, and neurochemical neuroimaging of methamphetamine-associated psychosis: a systematic review. Psychiatry Res. Neuroimaging 292, 23–31 (2019).
Google Scholar
Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W. & Everitt, B. J. High impulsivity predicts the switch to compulsive cocaine-taking. Science 320, 1352–1355 (2008).
Google Scholar
Kirson, D. et al. Decreased excitability of leptin-sensitive anterior insula pyramidal neurons in a rat model of compulsive food demand. Neuropharmacology 208, 108980 (2022).
Google Scholar
de Carvalho, L. M., Chen, H., Sutter, M., & Lasek A. M. Sexually dimorphic role for insular perineuronal nets in aversion-resistant alcohol consumption. Front. Psychiatry 14, 1122423 (2023).
Google Scholar
Apergis-Schoute, A. M. et al. Hyperconnectivity of the ventromedial prefrontal cortex in obsessive-compulsive disorder. Brain Neurosci. Adv. 2, 1–10 (2018).
Google Scholar
Rolls, E. T., Loh, M. & Deco, G. An attractor hypothesis of obsessive-compulsive disorder. Eur. J. Neurosci. 28, 782–793 (2008).
Google Scholar
Porrino, L. J., Smith, H. R., Nader, M. A. & Beveridge, T. J. The effects of cocaine: a shifting target over the course of addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1593–1600 (2007).
Google Scholar
Haber, S. Parallel and integrative processing through the basal ganglia reward circuit: lessons from addiction. Biol. Psychiatry 64, 173–174 (2008).
Google Scholar
Murray, J. E. et al. Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat. Commun. 6, 10088 (2015).
Google Scholar
Haber, S. N., Fudge, J. L. & McFarland, N. R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).
Google Scholar
Vollstadt-Klein, S. et al. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 105, 1741–1749 (2010).
Google Scholar
Dong, G. H. et al. Dorsal and ventral striatal functional connectivity shifts play a potential role in internet gaming disorder. Commun. Biol. 4, 866 (2021).
Google Scholar
Tiego, J. et al. Heritability of overlapping impulsivity and compulsivity dimensional phenotypes. Sci. Rep. 10, 14378 (2020).
Google Scholar
Roos, C. R., Sala, M., Kober, H., Vanzhula, I. A. & Levinson, C. A. Mindfulness-based interventions for eating disorders: the potential to mobilize multiple associative-learning change mechanisms. Int. J. Eat. Disord. 54, 1601–1607 (2021).
Google Scholar
Brewer, J. A. et al. Mindfulness training for smoking cessation: results from a randomized controlled trial. Drug Alcohol. Depend. 119, 72–80 (2011).
Google Scholar
Aouizerate, B. et al. Deep brain stimulation for OCD and major depression. Am. J. Psychiatry 162, 2192 (2005).
Google Scholar
Chang, R. et al. Deep brain stimulation in drug addiction treatment: research progress and perspective. Front. Psychiatry 13, 858638 (2022).
Google Scholar
Lee, Y. J. et al. Repetitive transcranial magnetic stimulation of the supplementary motor area in treatment-resistant obsessive-compulsive disorder: an open-label pilot study. J. Clin. Neurosci. 44, 264–268 (2017).
Google Scholar
Bergfeld, I. O. et al. Invasive and non-invasive neurostimulation for OCD. Curr. Top. Behav. Neurosci. 49, 399–436 (2021).
Google Scholar
Torres-Castano, A. et al. Transcranial magnetic stimulation for the treatment of cocaine addiction: a systematic review. J. Clin. Med. 10, 5595 (2021).
Google Scholar
Hanlon, C. A. et al. Developing repetitive transcranial magnetic stimulation (rTMS) as a treatment tool for cocaine use disorder: a series of six translational studies. Curr. Behav. Neurosci. Rep. 4, 341–352 (2017).
Google Scholar
Pinhal, C. M. et al. Differential effects of deep brain stimulation of the internal capsule and the striatum on excessive grooming in Sapap3 mutant mice. Biol. Psychiatry 84, 917–925 (2018).
Google Scholar
Brown, L. T. et al. Dorsal anterior cingulotomy and anterior capsulotomy for severe, refractory obsessive-compulsive disorder: a systematic review of observational studies. J. Neurosurg. 124, 77–89 (2016).
Google Scholar
Tyagi, H. et al. A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive-compulsive disorder: clinical and imaging evidence for dissociable effects. Biol. Psychiatry 85, 726–734 (2019).
Google Scholar
Li, N. et al. A unified functional network target for deep brain stimulation in obsessive-compulsive disorder. Biol. Psychiatry 90, 701–713 (2021).
Google Scholar
Soleimani, G. et al. Converging evidence for frontopolar cortex as a target for neuromodulation in addiction treatment. Am. J. Psychiatry 181, 100–114 (2024).
Google Scholar
Lissemore, J. I. et al. Brain serotonin synthesis capacity in obsessive-compulsive disorder: effects of cognitive behavioral therapy and sertraline. Transl. Psychiatry 8, 82 (2018).
Google Scholar
Rodriguez, C. I. et al. In vivo effects of ketamine on glutamate-glutamine and gamma-aminobutyric acid in obsessive-compulsive disorder: proof of concept. Psychiatry Res. 233, 141–147 (2015).
Google Scholar
Navarro, S. V., Gutierrez-Ferre, V., Flores, P. & Moreno, M. Activation of serotonin 5-HT2A receptors inhibits high compulsive drinking on schedule-induced polydipsia. Psychopharmacology 232, 683–697 (2015).
Google Scholar
Hogg, S. & Dalvi, A. Acceleration of onset of action in schedule-induced polydipsia: combinations of SSRI and 5-HT1A and 5-HT1B receptor antagonists. Pharmacol. Biochem. Behav. 77, 69–75 (2004).
Google Scholar
Williams, D. R. & Barry, H. III Counter conditioning in an operant conflict situation. J. Comp. Physiol. Psychol. 61, 154–156 (1966).
Google Scholar
Pearce, J. M. & Dickinson, A. Pavlovian counterconditioning: changing the suppressive properties of shock by association with food. J. Exp. Psychol. Anim. Behav. Process. 1, 170–177 (1975).
Google Scholar
Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).
Google Scholar
Pessiglione, M. & Delgado, M. R. The good, the bad and the brain: neural correlates of appetitive and aversive values underlying decision making. Curr. Opin. Behav. Sci. 5, 78–84 (2015).
Google Scholar
Strigo, I. A. & Craig, A. D. Interoception, homeostatic emotions and sympathovagal balance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20160010 (2016).
Google Scholar
Lipton, D. M., Gonzales, B. J. & Citri, A. Dorsal striatal circuits for habits, compulsions and addictions. Front. Syst. Neurosci. 13, 28 (2019).
Google Scholar
Brett, M., Leff, A. P. & Rorden, C. Ashburner. Spatial normalization of brain images with focal lesions using cost function masking. J. Neuroimage 14, 486–500 (2001).
Google Scholar
Pascoli, V., Terrier, J., Hiver, A. & Luscher, C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88, 1054–1066 (2015).
Google Scholar
Goodman, W. K. et al. The Yale–Brown obsessive compulsive scale. i. Development, use, and reliability. Arch. Gen. Psychiatry 46, 1006–1011 (1989).
Google Scholar
Winchel, R. M. et al. The Psychiatric Institute Trichotillomania Scale (PITS). Psychopharmacol. Bull. 28, 463–476 (1992).
Google Scholar
Cavanna, A. E. et al. The Gilles de la Tourette syndrome-quality of life scale (GTS-QOL) development and validation. Neurology 71, 1410–1416 (2008).
Google Scholar
Kim, S. W., Grant, J. E., Potenza, M. N., Blanco, C. & Hollander, E. The Gambling Symptom Assessment Scale (G-SAS): a reliability and validity study. Psychiatry Res. 166, 76–84 (2009).
Google Scholar
Franken, I. H. A., Hendriks, V. M. & van den Brink, W. Obsessive compulsive drug use scale. APA PsycTests https://doi.org/10.1037/t18284-000 (2002).
Lam, K. S. & Aman, M. G. The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. J. Autism Dev. Disord. 37, 855–866 (2007).
Google Scholar
Kagan, D. M. & Squires, R. L. in Measures for Clinical Practice and Research: A Sourcebook 4th edn, Vol. 1 (eds Fischer, J. & Corcoran, K.) 500–501 (Oxford Univ. Press, 2007).
Moon, S. J. et al. Psychometric properties of the internet addiction test: a systematic review and meta-analysis. Cyberpsychol. Behav. Soc. Netw. 21, 473–484 (2018).
Google Scholar
Schut, A. J., Castonguay, L. G. & Borkovec, T. D. Compulsive checking behaviors in generalized anxiety disorder. J. Clin. Psychol. 57, 705–715 (2001).
Google Scholar
Nyatsanza, S. et al. A study of stereotypic behaviours in Alzheimer’s disease and frontal and temporal variant frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 74, 1398–1402 (2003).
Google Scholar
Sanavio, E. Obsessions and compulsions: the Padua inventory. Behav. Res. Ther. 26, 169–177 (1988).
Google Scholar
Burns, G. L., Keortge, S. G., Formea, G. M. & Sternberger, L. G. Revision of the Padua Inventory of obsessive compulsive disorder symptoms: distinctions between worry, obsessions, and compulsions. Behav. Res. Ther. 34, 163–173 (1996).
Google Scholar
Foa, E. B. et al. The obsessive-compulsive inventory: development and validation of a short version. Psychol. Assess. 14, 485–496 (2002).
Google Scholar
Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305 (2016). An important article that links a range of subjective self-report questionnaires to latent constructs including compulsive behaviour and intrusive thought and, in turn, to objective measures of the balance between model-based and model-free behaviour.
Google Scholar
Chamberlain, S. R., Leppink, E. W., Redden, S. A. & Grant, J. E. Are obsessive — compulsive symptoms impulsive, compulsive or both? Compr. Psychiatry 68, 111–118 (2016).
Google Scholar
Burton, C. L. et al. Heritability of obsessive-compulsive trait dimensions in youth from the general population. Transl. Psychiatry https://doi.org/10.1038/s41398-018-0249-9 (2018).