Esquirol, E. Treatise on Insanity, Translation from French (Lean and Blanchard, 1845).

Luigjes, J. et al. Defining compulsive behavior. Neuropsychol. Rev. 29, 4–13 (2019). A detailed critique of the compulsivity construct, taking into account several operational definitions, and unusually highlighting and integrating its subjective, behavioural and maladaptive components.

Article 
PubMed 
PubMed Central 

Google Scholar 

Stein, D. J. et al. Obsessive-compulsive disorder: diagnostic and treatment issues. Psychiatr. Clin. North Am. 32, 665–685 (2009).

Article 
PubMed 

Google Scholar 

APA. The Diagnostic and Statistical Manual of Mental Disorders: DSM 5 (APA, 2013).

Genetti Gatfield, M., Peron, J., Medlin, F., Annoni, J. M. & Accolla, E. A. Compulsions without obsession following stroke. Neuropsychologia 162, 108050 (2021).

Article 
PubMed 

Google Scholar 

Mitchell, E., Tavares, T. P., Palaniyappan, L. & Finger, E. C. Hoarding and obsessive-compulsive behaviours in frontotemporal dementia: clinical and neuroanatomic associations. Cortex 121, 443–453 (2019).

Article 
PubMed 

Google Scholar 

Bostwick, J. M., Hecksel, K. A., Stevens, S. R., Bower, J. H. & Ahlskog, J. E. Frequency of new-onset pathologic compulsive gambling or hypersexuality after drug treatment of idiopathic Parkinson disease. Mayo Clin. Proc. 84, 310–316 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Djamshidian, A., Averbeck, B. B., Lees, A. J. & O’Sullivan, S. S. Clinical aspects of impulsive compulsive behaviours in Parkinson’s disease. J. Neurol. Sci. 310, 183–188 (2011).

Article 
PubMed 

Google Scholar 

Tiego, J. et al. Measuring compulsivity as a self-reported multidimensional transdiagnostic construct: large-scale (N = 182,000) validation of the Cambridge–Chicago compulsivity trait scale. Assessment 30, 2433–2448 (2023).

Article 
PubMed 

Google Scholar 

Chamberlain, S. R. & Grant, J. E. Initial validation of a transdiagnostic compulsivity questionnaire: the Cambridge–Chicago Compulsivity Trait Scale. CNS Spectr. 23, 340–346 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S. & Ersche, K. D. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16, 81–91 (2012).

Article 
PubMed 

Google Scholar 

Khalsa, S. S. et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501–513 (2018).

PubMed 

Google Scholar 

Koob, G. F. Anhedonia, hyperkatifeia, and negative reinforcement in substance use disorders. Curr. Top. Behav. Neurosci. 58, 147–165 (2022).

Article 
PubMed 

Google Scholar 

Koob, G. F., Powell, P. & White, A. Addiction as a coping response: hyperkatifeia, deaths of despair, and COVID-19. Am. J. Psychiatry 177, 1031–1037 (2020). A classic application and extension of the negative reinforcement principle to compulsive behaviour in drug addiction, focusing on the role of the negative affective state in alcohol and opioid drug use disorders.

Article 
PubMed 

Google Scholar 

Stein, D. J. et al. Obsessive-compulsive disorder. Nat. Rev. Dis. Primers https://doi.org/10.1038/s41572-019-0102-3 (2019).

Tiffany, S. T. & Carter, B. L. Is craving the source of compulsive drug use? J. Psychopharmacol. 12, 23–30 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Guillen-Font, M. A. et al. Insight in obsessive-compulsive disorder: relationship with sociodemographic and clinical characteristics. J. Psychiatr. Pract. 27, 427–438 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cervin, M. et al. Towards a definitive symptom structure of obsessive-compulsive disorder: a factor and network analysis of 87 distinct symptoms in 1366 individuals. Psychol. Med. 52, 3267–3279 (2022).

Article 
PubMed 

Google Scholar 

Andrews-McClymont, J. G., Lilienfeld, S. O. & Duke, M. P. Evaluating an animal model of compulsive hoarding in humans. Rev. Gen. Psychol. 17, 399–419 (2013).

Article 

Google Scholar 

Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. & Baler, R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr. Top. Behav. Neurosci. 11, 1–24 (2012).

CAS 
PubMed 

Google Scholar 

Velazquez-Sanchez, C. et al. High trait impulsivity predicts food addiction-like behavior in the rat. Neuropsychopharmacology 39, 2463–2472 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Godier, L. R. & Park, R. J. Does compulsive behavior in anorexia nervosa resemble an addiction? A qualitative investigation. Front. Psychol. 6, 1608 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

D’Angelo, L.-S. et al. Animal models of obsessive-compulsive spectrum disorders. CNS Spectr. 19, 28–49 (2014).

Article 

Google Scholar 

Brett, L. P. & Levine, S. Schedule-induced polydipsia suppresses pituitary-adrenal activity in rats. J. Comp. Physiol. Psychol. 93, 946–956 (1979).

Article 
CAS 
PubMed 

Google Scholar 

Falk, J. Production of polydipsia in normal rats by an intermittent food schedule. Science 133, 195–196 (1961).

Article 
CAS 
PubMed 

Google Scholar 

Dundas, B., Harris, M. & Narasimhan, M. Psychogenic polydipsia review: etiology, differential, and treatment. Curr. Psychiatry Rep. 9, 236–241 (2007).

Article 
PubMed 

Google Scholar 

Tolomeo, S., Macfarlane, J. A., Baldacchino, A., Koob, G. F. & Steele, J. D. Alcohol binge drinking: negative and positive valence system abnormalities. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 126–134 (2021).

PubMed 

Google Scholar 

Wolffgramm, J. & Heyne, A. From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav. Brain Res. 70, 77–94 (1995). An early seminal demonstration of compulsive alcohol drinking.

Article 
CAS 
PubMed 

Google Scholar 

Marti-Prats, L. et al. Baclofen decreases compulsive alcohol drinking in rats characterized by reduced levels of GAT-3 in the central amygdala. Addict. Biol. 26, e13011 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Belin-Rauscent, A., Fouyssac, M., Bonci, A. & Belin, D. How preclinical models evolved to resemble the diagnostic criteria of drug addiction. Biol. Psychiatry 79, 39–46 (2016).

Article 
PubMed 

Google Scholar 

Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Jones, J. A. et al. Neurobehavioral precursors of compulsive cocaine seeking in dual frontostriatal circuits. Biol. Psychiatry Glob. Open Sci. 4, 194–202 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Giuliano, C., Belin, D. & Everitt, B. J. Compulsive alcohol seeking results from a failure to disengage dorsolateral striatal control over behavior. J. Neurosci. 39, 1744–1754 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Giuliano, C. et al. Evidence for a long-lasting compulsive alcohol seeking phenotype in rats. Neuropsychopharmacology 43, 728–738 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Everitt, B. J. Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci. Biobehav. Rev. 14, 217–232 (1990).

Article 
CAS 
PubMed 

Google Scholar 

Robbins, T. W. Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant-drugs. Nature 264, 57–59 (1976).

Article 
CAS 
PubMed 

Google Scholar 

Thorndike, E. L. The law of effect. Am. J. Psychol. 39, 212–222 (1927).

Article 

Google Scholar 

Olds, J. & Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954).

Article 
CAS 
PubMed 

Google Scholar 

Pascoli, V. et al. Cell-type specific synaptic plasticity in dorsal striatum is associated with punishment-resistance compulsive-like cocaine self-administration in mice. Neuropsychopharmacology 48, 448–458 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Harada, M., Pascoli, V., Hiver, A., Flakowski, J. & Lüscher, C. Cortico-striatal activity driving compulsive reward-seeking. Biol. Psychiatry 90, 808–818 (2021).

Article 
PubMed 

Google Scholar 

Lüscher, C., Robbins. T. W., & Everitt, B. J. The transition to compulsion in addiction. Nat. Rev. Neurosci. 21, 247–263 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Heath, R. G. Electrical self-stimulation of the brain in man. Am. J. Psychiatry 120, 571–577 (1963).

Article 
CAS 
PubMed 

Google Scholar 

Taylor, J. R. & Robbins, T. W. 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology 90, 390–397 (1986).

Article 
CAS 
PubMed 

Google Scholar 

Robbins, T. W. & Costa, R. M. Habits. Curr. Biol. 27, R1200–R1206 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Dickinson, A. Actions and habits: the development of behavioural autonomy. Philos. Trans. R. Soc. Lond. B 308, 67–78 (1985).

Article 

Google Scholar 

Marti-Prats, L. et al. The development of compulsive coping behavior depends on dorsolateral striatum dopamine-dependent mechanisms. Mol. Psychiatry 28, 4666–4678 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Belin, D., Economidou, D., Pelloux, Y. & Everitt, B. J. Habit formation and compulsion. Anim. Model. Drug Addiction 53, 337–378 (2011).

Article 
CAS 

Google Scholar 

Jentsch, J. D. & Taylor, J. R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146, 373–390 (1999).

Article 
CAS 
PubMed 

Google Scholar 

Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H. & Holmes, A. The neural basis of reversal learning: an updated perspective. Neuroscience 345, 12–26 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Clarke, H. F., Dalley, J. W., Crofts, H. S., Robbins, T. W. & Roberts, A. C. Cognitive inflexibility after prefrontal serotonin depletion. Science 304, 878–880 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Taylor, J. R. & Robbins, T. W. Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84, 405–412 (1984).

Article 
CAS 
PubMed 

Google Scholar 

Fouyssac, M. et al. Negative urgency exacerbates relapse to cocaine seeking after abstinence. Biol. Psychiatry 91, 1051–1060 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Belin, D., Belin-Rauscent, A., Murray, J. E. & Everitt, B. J. Addiction: failure of control over maladaptive incentive habits. Curr. Opin. Neurobiol. 23, 564–572 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Belin, D. & Everitt, B. J. in Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 13 (eds Heinz, S. & Kuei, T.) 571–592 (Elsevier, Academic, 2010).

Everitt, B. J. & Robbins, T. W. Drug addiction: updating actions to habits to compulsions ten years on. Annu. Rev. Psychol. 67, 23–50 (2016).

Article 
PubMed 

Google Scholar 

Robbins, T. W., Vaghi, M. M. & Banca, P. Obsessive-compulsive disorder: puzzles and prospects. Neuron 102, 27–47 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Gillan, C. M. et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol. Psychiatry 75, 631–638 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Schwabe, L. & Wolf, O. T. Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of action. Behav. Brain Res. 219, 321–328 (2011).

Article 
PubMed 

Google Scholar 

Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325, 621–625 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Doll, B. B., Shohamy, D. & Daw, N. D. Multiple memory systems as substrates for multiple decision systems. Neurobiol. Learn. Mem. 117, 4–13 (2015).

Article 
PubMed 

Google Scholar 

Dayan, P. & Daw, N. D. Decision theory, reinforcement learning, and the brain. Cogn. Affect. Behav. Neurosci. 8, 429–453 (2008).

Article 
PubMed 

Google Scholar 

Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol. Psychiatry 20, 345–352 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Menon, V. & D’Esposito, M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47, 90–103 (2022).

Article 
PubMed 

Google Scholar 

Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Hardwick, R. M., Forrence, A. D., Krakauer, J. W. & Haith, A. M. Time-dependent competition between goal-directed and habitual response preparation. Nat. Hum. Behav. 3, 1252–1262 (2019). Describes a striking new human test paradigm for examining factors influencing the balance between goal-directed and habitual responding based on concepts in motor control and showing that the two systems act in parallel from early in training rather than the emergence of habits depending on the training duration.

Article 
PubMed 

Google Scholar 

Jones, C. L., Minati, L., Harrison, N. A., Ward, J. & Critchley, H. D. Under pressure: response urgency modulates striatal and insula activity during decision-making under risk. PLoS ONE 6, e20942 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zorrilla, E. P. & Koob, G. F. Impulsivity derived from the dark side: neurocircuits that contribute to negative urgency. Front. Behav. Neurosci. 13, 136 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Um, M., Hummer, T. A. & Cyders, M. A. Relationship of negative urgency to cingulo-insular and cortico-striatal resting state functional connectivity in tobacco use. Brain Imaging Behav. 14, 1921–1932 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lee, S. W., Shimojo, S. & O’Doherty, J. P. Neural computations underlying arbitration between model-based and model-free learning. Neuron 81, 687–699 (2014). Describes a new method for measuring arbitration between goal-directed and habitual behaviour based on the model-based/model-free paradigm, and uses it to delineate neural mechanisms underlying this capacity using functional MRI.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gruner, P., Anticevic, A., Lee, D. & Pittenger, C. Arbitration between action strategies in obsessive-compulsive disorder. Neuroscientist 22, 188–198 (2016). Imaginative application of the hypothesis of arbitration between goal-directed and habitual behaviour to obsessive-compulsive disorder — raising the intriguing possibility that this process may be impaired rather than goal-directed and habit systems per se.

Article 
PubMed 

Google Scholar 

Ruan, Z. et al. Impairment of arbitration between model-based and model-free reinforcement learning in obsessive-compulsive disorder. Front. Psychiatry 14, 1162800 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Seok, D. et al. Neurocircuit dynamics of arbitration between decision-making strategies across obsessive-compulsive and related disorders. NeuroImage Clin. 35, 103073 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Strauss, A. Y. et al. Why check? A meta-analysis of checking in obsessive-compulsive disorder: threat vs. distrust of senses. Clin. Psychol. Rev. 75, 101807 (2020).

Article 
PubMed 

Google Scholar 

Fradkin, I., Adams, R. A., Parr, T., Roiser, J. P. & Huppert, J. D. Searching for an anchor in an unpredictable world: a computational model of obsessive compulsive disorder. Psychol. Rev. 127, 672–699 (2020). This innovative theoretical paper provides a new computational model of behavioural processes underlying obsessive-compulsive disorder focusing on contamination and compulsive washing behaviour, based on the idea that patients with obsessive-compulsive disorder have special difficulties in state transitions in behaviour. These difficulties are hypothesized to be enhanced under conditions of environmental volatility and unpredictability, whereas in familiar circumstances, habitual behaviour predominates.

Article 
PubMed 

Google Scholar 

Velazquez-Sanchez, C., Muresan, L., Marti-Prats, L. & Belin, D. The development of compulsive coping behaviour is associated with a downregulation of Arc in a locus coeruleus neuronal ensemble. Neuropsychopharmacology 48, 653–663 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Koob, G. F. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Rauch, S. L. et al. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry 51, 62–70 (1994). The culmination of a series of seminal articles using positron emission tomography to analyse the activity of the orbitofrontal cortex, anterior cingulate cortex and caudate nucleus in obsessive-compulsive disorder, through the metabolic activity of these regions. A special aspect of this study was the use of a symptom provocation design.

Article 
CAS 
PubMed 

Google Scholar 

Saxena, S., Brody, A. L., Schwartz, J. M. & Baxter, L. R. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br. J. Psychiatry 173 (suppl. 35), 26–37 (1998).

Article 

Google Scholar 

Rauch, S. Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology 27, 782–791 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Graybiel, A. M. & Rauch, S. L. Toward a neurobiology of obsessive-compulsive disorder. Neuron 28, 343–347 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Breiter, H. C. et al. Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch. Gen. Psychiatry 53, 595–606 (1996).

Article 
CAS 
PubMed 

Google Scholar 

Beucke, J. C. et al. Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiatry 70, 619–629 (2013).

Article 
PubMed 

Google Scholar 

Meunier, D. et al. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder. NeuroImage 59, 1461–1468 (2012).

Article 
PubMed 

Google Scholar 

Balleine, B. W. & O’Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).

Article 
PubMed 

Google Scholar 

Ersche, K. D. et al. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134, 2013–2024 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kang, D. H. et al. Volumetric investigation of the frontal-subcortical circuitry in patients with obsessive-compulsive disorder. J. Neuropsychiatry Clin. Neurosci. 16, 342–349 (2004).

Article 
PubMed 

Google Scholar 

Atmaca, M. et al. Volumetric MRI assessment of brain regions in patients with refractory obsessive-compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 1051–1057 (2006).

Article 
PubMed 

Google Scholar 

Yang, Z. et al. A multimodal meta-analysis of regional functional and structural brain abnormalities in obsessive-compulsive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 274, 165–180 (2023).

Article 
PubMed 

Google Scholar 

de Vries, F. E. et al. Compensatory frontoparietal activity during working memory: an endophenotype of obsessive-compulsive disorder. Biol. Psychiatry 76, 878–887 (2014).

Article 
PubMed 

Google Scholar 

Rolls, E. T. The Orbitofrontal Cortex (Oxford Univ. Press, 2019).

Hervig, M. E. et al. Dissociable and paradoxical roles of rat medial and lateral orbitofrontal cortex in visual serial reversal learning. Cereb. Cortex 30, 1016–1029 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Zald, D. & Rauch, S. (eds.) The Orbitofrontal Cortex (Oxford Univ. Press, 2006).

Jung, W. H. et al. Abnormal corticostriatal-limbic functional connectivity in obsessive-compulsive disorder during reward processing and resting-state. NeuroImage Clin. 3, 27–38 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Haber, S. N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Anticevic, A. et al. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol. Psychiatry 75, 595–605 (2014).

Article 
PubMed 

Google Scholar 

Harrison, B. J. et al. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch. Gen. Psychiatry 66, 1189–1200 (2009).

Article 
PubMed 

Google Scholar 

Hou, J. M. et al. Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. J. Psychiatry Neurosci. 39, 304–311 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Naze, S. et al. Mechanisms of imbalanced frontostriatal functional connectivity in obsessive-compulsive disorder. Brain 146, 1322–1327 (2023).

Article 
PubMed 

Google Scholar 

Figee, M. et al. Compulsivity in obsessive-compulsive disorder and addictions. Eur. Neuropsychopharmacol. 26, 856–868 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Xu, C. et al. Imbalance in functional and structural connectivity underlying goal-directed and habitual learning systems in obsessive-compulsive disorder. Cereb. Cortex 32, 3690–3705 (2022).

Article 
PubMed 

Google Scholar 

Ersche, K. D. et al. Brain networks underlying vulnerability and resilience to drug addiction. Proc. Natl Acad. Sci. USA 117, 15253–15261 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ziegler, G. et al. Compulsivity and impulsivity traits linked to attenuated developmental frontostriatal myelination trajectories. Nat. Neurosci. 22, 992–999 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Akkermans, S. E. A. et al. Frontostriatal functional connectivity correlates with repetitive behaviour across autism spectrum disorder and obsessive-compulsive disorder. Psychol. Med. 49, 2247–2255 (2019).

Article 
PubMed 

Google Scholar 

Radua, J., van den Heuvel, O. A., Surguladze, S. & Mataix-Cols, D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch. Gen. Psychiatry 67, 701–711 (2010).

Article 
PubMed 

Google Scholar 

Norman, L. J. et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: a comparative meta-analysis. JAMA Psychiatry 73, 815–825 (2016).

Article 
PubMed 

Google Scholar 

Vaghi, M. M. et al. Hypoactivation and dysconnectivity of a frontostriatal circuit during goal-directed planning as an endophenotype for obsessive-compulsive disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 655–663 (2017).

PubMed 
PubMed Central 

Google Scholar 

Vaghi, M. M. et al. Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol. Psychiatry 81, 708–717 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Soriano-Mas, C. Functional brain imaging and OCD. Curr. Top. Behav. Neurosci. 49, 269–300 (2021).

Article 
PubMed 

Google Scholar 

Ersche, K. D. et al. Response perseveration in stimulant dependence is associated with striatal dysfunction and can be ameliorated by a D(2/3) receptor agonist. Biol. Psychiatry 70, 754–762 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chamberlain, S. et al. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science 321, 421–422 (2008).

Article 
CAS 
PubMed 

Google Scholar 

van den Heuvel, O. A. et al. Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch. Gen. Psychiatry 62, 301–309 (2005).

Article 
PubMed 

Google Scholar 

Gu, B. M. et al. Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain 131, 155–164 (2008).

Article 
PubMed 

Google Scholar 

de Wit, S. J. et al. Presupplementary motor area hyperactivity during response inhibition: a candidate endophenotype of obsessive-compulsive disorder. Am. J. Psychiatry 169, 1100–1108 (2012).

Article 
PubMed 

Google Scholar 

Vaghi, M. M. et al. Compulsivity is linked to reduced adolescent development of goal-directed control and frontostriatal functional connectivity. Proc. Natl Acad. Sci. USA 117, 25911–25922 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kim, D., Park, G. Y., JP, O. D. & Lee, S. W. Task complexity interacts with state-space uncertainty in the arbitration between model-based and model-free learning. Nat. Commun. 10, 5738 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Weissengruber, S., Lee, S. W., O’Doherty, J. P. & Ruff, C. C. Neurostimulation reveals context-dependent arbitration between model-based and model-free reinforcement learning. Cereb. Cortex 29, 4850–4862 (2019).

Article 
PubMed 

Google Scholar 

Gillan, C. M. et al. Functional neuroimaging of avoidance habits in obsessive-compulsive disorder. Am. J. Psychiatry 172, 284–293 (2015).

Article 
PubMed 

Google Scholar 

Hauser, T. U. et al. Increased fronto-striatal reward prediction errors moderate decision making in obsessive-compulsive disorder. Psychol. Med. 47, 1246–1258 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Apergis-Schoute, A. M. et al. Neural basis of impaired safety signaling in obsessive compulsive disorder. Proc. Natl Acad. Sci. USA 114, 3216–3221 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Murray, G. K. et al. Dopaminergic drug treatment remediates exaggerated cingulate prediction error responses in obsessive-compulsive disorder. Psychopharmacology 236, 2325–2336 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sunol, M. et al. Differential patterns of brain activation between hoarding disorder and obsessive-compulsive disorder during executive performance. Psychol. Med. 50, 666–673 (2020).

Article 
PubMed 

Google Scholar 

Mataix-Cols, D. et al. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch. Gen. Psychiatry 61, 564–576 (2004).

Article 
PubMed 

Google Scholar 

Banca, P. et al. Imbalance in habitual versus goal directed neural systems during symptom provocation in obsessive-compulsive disorder. Brain 138, 798–811 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Klugah-Brown, B. et al. Common neurofunctional dysregulations characterize obsessive-compulsive, substance use, and gaming disorders — an activation likelihood meta-analysis of functional imaging studies. Addict. Biol. 26, e12997 (2021).

Article 
PubMed 

Google Scholar 

Klugah‐Brown, B. et al. Common abnormality of gray matter integrity in substance use disorder and obsessive‐compulsive disorder: a comparative voxel‐based meta‐analysis. Hum. Brain Mapp. 42, 3871–3886 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Conti, A. A. & Baldacchino, A. M. Early-onset smoking theory of compulsivity development: a neurocognitive model for the development of compulsive tobacco smoking. Front. Psychiatry 14, 1209277 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Koban, L., Wager, T. D. & Kober, H. A neuromarker for drug and food craving distinguishes drug users from non-users. Nat. Neurosci. 26, 316–325 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Naqvi, N. H., Rudrauf, D., Damasio, H. & Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science 315, 531–534 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Schienle, A., Potthoff, J. & Wabnegger, A. Voxel-based morphometry analysis of structural brain scans in skin-picking disorder. Compr. Psychiatry 84, 82–86 (2018).

Article 
PubMed 

Google Scholar 

Jones, R. & Bhattacharya, J. Alpha activity in the insula accompanies the urge to neutralize in sub-clinical obsessive-compulsive participants. J. Behav. Addict. 1, 96–105 (2012).

Article 
PubMed 

Google Scholar 

Jackson, S. R., Parkinson, A., Kim, S. Y., Schuermann, M. & Eickhoff, S. B. On the functional anatomy of the urge-for-action. Cogn. Neurosci. 2, 227–243 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bruin, W. B. et al. The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Mol. Psychiatry 28, 4307–4319 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Miquel, M., Nicola, S. M., Gil-Miravet, I., Guarque-Chabrera, J. & Sanchez-Hernandez, A. A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Front. Behav. Neurosci. 13, 99 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kubota, Y. et al. Putamen volume correlates with obsessive compulsive characteristics in healthy population. Psychiatry Res. Neuroimaging 249, 97–104 (2016).

Article 
PubMed 

Google Scholar 

Hollander, E. et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol. Psychiatry 58, 226–232 (2005).

Article 
PubMed 

Google Scholar 

Wang, A. R. et al. Human habit neural circuitry may be perturbed in eating disorders. Sci. Transl. Med. 15, eabo4919 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Ersche, K. D. et al. Reduced glutamate turnover in the putamen is linked with automatic habits in human cocaine addiction. Biol. Psychiatry 89, 970–979 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Biria, M. et al. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat. Commun. 14, 3324 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Duan, L. Y. et al. Controlling one’s world: identification of sub-regions of primate PFC underlying goal-directed behavior. Neuron 109, 2485–2498.e5 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Garner, J. P., Weisker, S. M., Dufour, B. & Mench, J. A. Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp. Med. 54, 216–224 (2004).

CAS 
PubMed 

Google Scholar 

Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ullrich, M. et al. OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency. Mol. Psychiatry 23, 444–458 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Wan, Y. et al. Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. Biol. Psychiatry 75, 623–630 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Corbit, V. L., Manning, E. E., Gittis, A. H. & Ahmari, S. E. Strengthened inputs from secondary motor cortex to striatum in a mouse model of compulsive behavior. J. Neurosci. 39, 2965–2975 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lei, H., Lai, J., Sun, X., Xu, Q. & Feng, G. Lateral orbitofrontal dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. J. Psychiatry Neurosci. 44, 120–131 (2019).

Article 
PubMed 

Google Scholar 

Manning, E. E., Geramita, M. A., Piantadosi, S. C., Pierson, J. L. & Ahmari, S. E. Distinct patterns of abnormal lateral orbitofrontal cortex activity during compulsive grooming and reversal learning normalize after fluoxetine. Biol. Psychiatry 93, 989–999 (2023).

Article 
CAS 
PubMed 

Google Scholar 

van den Boom, B. J. G. et al. Unraveling the mechanisms of deep-brain stimulation of the internal capsule in a mouse model. Nat. Commun. 14, 5385 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yang, Z. et al. Dysfunction of orbitofrontal GABAergic interneurons leads to impaired reversal learning in a mouse model of obsessive-compulsive disorder. Curr. Biol. 31, 381–393.e4 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Piantadosi, S. C. et al. Hyperactivity of Indirect Pathway-Projecting Spiny Projection Neurons Drives Compulsive Behavior (Cold Spring Harbor Laboratory, 2022).

Apergis-Schoute, A. M. et al. Perseveration and shifting in obsessive-compulsive disorder as a function of uncertainty, punishment, and serotonergic medication. Biol. Psychiatry Global Open Sci. https://doi.org/10.1016/j.bpsgos.2023.06.004 (2024).

Milton, L. K. et al. Suppression of Cortico-Striatal Circuit Activity Improves Cognitive Flexibility and Prevents Body Weight Loss in Activity-Based Anorexia in Rats (Cold Spring Harbor Laboratory, 2020).

Burguiere, E., Monteiro, P., Feng, G. & Graybiel, A. M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340, 1243–1246 (2013). Seminal use of optogenetic techniques in a prominent genetic (Dlgap3) mouse model of obsessive-compulsive disorder to restore control over compulsive grooming behaviour.

Article 
CAS 
PubMed 

Google Scholar 

Ahmari, S. E. et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340, 1234–1239 (2013). Seminal use of optogenetic techniques in a prominent genetic (Dlgap3) mouse model of obsessive-compulsive disorder to simulate symptom provocation via orbitofrontal-striatal pathways, leading to compulsive grooming behaviour.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lamothe, H. et al. The Sapap3(−/−) mouse reconsidered as a comorbid model expressing a spectrum of pathological repetitive behaviours. Transl. Psychiatry 13, 26 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Belin-Rauscent, A. et al. From impulses to maladaptive actions: the insula is a neurobiological gate for the development of compulsive behavior. Mol. Psychiatry 21, 491–499 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Fouyssac, M. et al. Environment-dependent behavioral traits and experiential factors shape addiction vulnerability. Eur. J. Neurosci. 53, 1794–1808 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Navarro, S. V. et al. Behavioral biomarkers of schizophrenia in high drinker rats: a potential endophenotype of compulsive neuropsychiatric disorders. Schizophr. Bull. 43, 778–787 (2017).

Article 
PubMed 

Google Scholar 

Robbins, T. W. & Koob, G. F. Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285, 409–412 (1980).

Article 
CAS 
PubMed 

Google Scholar 

Ansquer, S. et al. Atomoxetine decreases vulnerability to develop compulsivity in high impulsive rats. Biol. Psychiatry 75, 825–832 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Mora, S., Merchan, A., Aznar, S., Flores, P. & Moreno, M. Increased amygdala and decreased hippocampus volume after schedule-induced polydipsia in high drinker compulsive rats. Behav. Brain Res. 390, 112592 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Merchan, A. et al. Excessive habit formation in schedule-induced polydipsia: microstructural analysis of licking among rat strains and involvement of the orbitofrontal cortex. Genes Brain Behav. 18, e12489 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Moreno, M. et al. Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology 219, 661–672 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Mora, S. et al. Reduced cortical serotonin 5-HT2A receptor binding and glutamate activity in high compulsive drinker rats. Neuropharmacology 143, 10–19 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Mills, I. H. & Medlicott, L. Anorexia nervosa as a compulsive behaviour disease. Q. J. Med. 83, 507–522 (1992).

CAS 
PubMed 

Google Scholar 

Moore, C. F., Sabino, V., Koob, G. F. & Cottone, P. Neuroscience of compulsive eating behavior. Front. Neurosci. 11, 469 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Beneke, W. M., Schulte, S. E. & vander Tuig, J. G. An analysis of excessive running in the development of activity anorexia. Physiol. Behav. 58, 451–457 (1995).

Article 
CAS 
PubMed 

Google Scholar 

Price, A. E., Stutz, S. J., Hommel, J. D., Anastasio, N. C. & Cunningham, K. A. Anterior insula activity regulates the associated behaviors of high fat food binge intake and cue reactivity in male rats. Appetite 133, 231–239 (2019).

Article 
PubMed 

Google Scholar 

Furlong, T. M., Jayaweera, H. K., Balleine, B. W. & Corbit, L. H. Binge-like consumption of a palatable food accelerates habitual control of behavior and is dependent on activation of the dorsolateral striatum. J. Neurosci. 34, 5012–5022 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hildebrandt, B. A., Fisher, H., LaPalombara, Z., Young, M. E. & Ahmari, S. E. Corticostriatal dynamics underlying components of binge-like consumption of palatable food in mice. Appetite 183, 106462 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Vousden, G. H., Paulcan, S., Robbins, T. W., Eagle, D. M. & Milton, A. L. Checking responses of goal- and sign-trackers are differentially affected by threat in a rodent analog of obsessive-compulsive disorder. Learn. Mem. 27, 190–200 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Eagle, D. M. et al. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: a novel possible model of OCD. Behav. Brain Res. 264, 207–229 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

d’Angelo, C., Eagle, D. M., Coman, C. M. & Robbins, T. W. Role of the medial prefrontal cortex and nucleus accumbens in an operant model of checking behaviour and uncertainty. Brain Neurosci. Adv. 1, 2398212817733403 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Martinez-Rivera, F. J. et al. A novel insular/orbital-prelimbic circuit that prevents persistent avoidance in a rodent model of compulsive behavior. Biol. Psychiatry 93, 1000–1009 (2023).

Article 
PubMed 

Google Scholar 

Hu, Y. Z. et al. Compulsive drug use is associated with imbalance of orbitofrontal- and prelimbic-striatal circuits in punishment-resistant individuals. Proc. Natl Acad. Sci. USA 116, 9066–9071 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, B. T. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496, 359–362 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Jadhav, K. S. et al. Reversing anterior insular cortex neuronal hypoexcitability attenuates compulsive behavior in adolescent rats. Proc. Natl Acad. Sci. USA 119, e2121247119 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Spierling, S. et al. Insula to ventral striatal projections mediate compulsive eating produced by intermittent access to palatable food. Neuropsychopharmacology 45, 579–588 (2020).

Article 
PubMed 

Google Scholar 

Chen, Y. et al. An orbitofrontal cortex–anterior insular cortex circuit gates compulsive cocaine use. Sci. Adv. 8, eabq5745 (2022). A seminal study using multimodal neurobiological methods to highlight the role of the anterior insula in individual differences in a model of compulsive cocaine taking in rats. Chemogenetic manipulation of activity of this region is shown bidirectionally to regulate this behaviour.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Pelloux, Y., Dilleen, R., Economidou, D., Theobald, D. & Everitt, B. J. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology 37, 2505–2514 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hodebourg, R. et al. Heroin seeking becomes dependent on dorsal striatal dopaminergic mechanisms and can be decreased by N-acetylcysteine. Eur. J. Neurosci. 50, 2036–2044 (2019).

Article 
PubMed 

Google Scholar 

Belin, D. & Everitt, B. J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Giuliano, C., Puaud, M., Cardinal, R. N., Belin, D. & Everitt, B. J. Individual differences in the engagement of habitual control over alcohol seeking predict the development of compulsive alcohol seeking and drinking. Addict. Biol. 26, e13041 (2021).

Article 
PubMed 

Google Scholar 

Augier, E. et al. A molecular mechanism for choosing alcohol over an alternative reward. Science 360, 1321–1326 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Halladay, L. R. et al. Prefrontal regulation of punished ethanol self-administration. Biol. Psychiatry 87, 967–978 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Murray, J. E., Belin, D. & Everitt, B. J. Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 37, 2456–2466 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Everitt, B. J., Giuliano, C. & Belin, D. Addictive behaviour in experimental animals: prospects for translation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170027 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ersche, K. D. et al. Carrots and sticks fail to change behavior in cocaine addiction. Science 352, 1468–1471 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408 (2003).

Article 
PubMed 

Google Scholar 

Coutureau, E. & Killcross, S. Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav. Brain Res. 146, 167–174 (2003).

Article 
PubMed 

Google Scholar 

Duan, Y. et al. Compulsive drug-taking is associated with habenula–frontal cortex connectivity. Proc. Natl Acad. Sci. USA 119, e2208867119 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, C., Hsu, F. C., Li, C. W. & Huang, M. C. Structural, functional, and neurochemical neuroimaging of methamphetamine-associated psychosis: a systematic review. Psychiatry Res. Neuroimaging 292, 23–31 (2019).

Article 
PubMed 

Google Scholar 

Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W. & Everitt, B. J. High impulsivity predicts the switch to compulsive cocaine-taking. Science 320, 1352–1355 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kirson, D. et al. Decreased excitability of leptin-sensitive anterior insula pyramidal neurons in a rat model of compulsive food demand. Neuropharmacology 208, 108980 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

de Carvalho, L. M., Chen, H., Sutter, M., & Lasek A. M. Sexually dimorphic role for insular perineuronal nets in aversion-resistant alcohol consumption. Front. Psychiatry 14, 1122423 (2023).

Article 

Google Scholar 

Apergis-Schoute, A. M. et al. Hyperconnectivity of the ventromedial prefrontal cortex in obsessive-compulsive disorder. Brain Neurosci. Adv. 2, 1–10 (2018).

Article 
PubMed 

Google Scholar 

Rolls, E. T., Loh, M. & Deco, G. An attractor hypothesis of obsessive-compulsive disorder. Eur. J. Neurosci. 28, 782–793 (2008).

Article 
PubMed 

Google Scholar 

Porrino, L. J., Smith, H. R., Nader, M. A. & Beveridge, T. J. The effects of cocaine: a shifting target over the course of addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1593–1600 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Haber, S. Parallel and integrative processing through the basal ganglia reward circuit: lessons from addiction. Biol. Psychiatry 64, 173–174 (2008).

Article 
PubMed 

Google Scholar 

Murray, J. E. et al. Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat. Commun. 6, 10088 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Haber, S. N., Fudge, J. L. & McFarland, N. R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Vollstadt-Klein, S. et al. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 105, 1741–1749 (2010).

Article 
PubMed 

Google Scholar 

Dong, G. H. et al. Dorsal and ventral striatal functional connectivity shifts play a potential role in internet gaming disorder. Commun. Biol. 4, 866 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tiego, J. et al. Heritability of overlapping impulsivity and compulsivity dimensional phenotypes. Sci. Rep. 10, 14378 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Roos, C. R., Sala, M., Kober, H., Vanzhula, I. A. & Levinson, C. A. Mindfulness-based interventions for eating disorders: the potential to mobilize multiple associative-learning change mechanisms. Int. J. Eat. Disord. 54, 1601–1607 (2021).

Article 
PubMed 

Google Scholar 

Brewer, J. A. et al. Mindfulness training for smoking cessation: results from a randomized controlled trial. Drug Alcohol. Depend. 119, 72–80 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Aouizerate, B. et al. Deep brain stimulation for OCD and major depression. Am. J. Psychiatry 162, 2192 (2005).

Article 
PubMed 

Google Scholar 

Chang, R. et al. Deep brain stimulation in drug addiction treatment: research progress and perspective. Front. Psychiatry 13, 858638 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lee, Y. J. et al. Repetitive transcranial magnetic stimulation of the supplementary motor area in treatment-resistant obsessive-compulsive disorder: an open-label pilot study. J. Clin. Neurosci. 44, 264–268 (2017).

Article 
PubMed 

Google Scholar 

Bergfeld, I. O. et al. Invasive and non-invasive neurostimulation for OCD. Curr. Top. Behav. Neurosci. 49, 399–436 (2021).

Article 
PubMed 

Google Scholar 

Torres-Castano, A. et al. Transcranial magnetic stimulation for the treatment of cocaine addiction: a systematic review. J. Clin. Med. 10, 5595 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hanlon, C. A. et al. Developing repetitive transcranial magnetic stimulation (rTMS) as a treatment tool for cocaine use disorder: a series of six translational studies. Curr. Behav. Neurosci. Rep. 4, 341–352 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Pinhal, C. M. et al. Differential effects of deep brain stimulation of the internal capsule and the striatum on excessive grooming in Sapap3 mutant mice. Biol. Psychiatry 84, 917–925 (2018).

Article 
PubMed 

Google Scholar 

Brown, L. T. et al. Dorsal anterior cingulotomy and anterior capsulotomy for severe, refractory obsessive-compulsive disorder: a systematic review of observational studies. J. Neurosurg. 124, 77–89 (2016).

Article 
PubMed 

Google Scholar 

Tyagi, H. et al. A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive-compulsive disorder: clinical and imaging evidence for dissociable effects. Biol. Psychiatry 85, 726–734 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Li, N. et al. A unified functional network target for deep brain stimulation in obsessive-compulsive disorder. Biol. Psychiatry 90, 701–713 (2021).

Article 
PubMed 

Google Scholar 

Soleimani, G. et al. Converging evidence for frontopolar cortex as a target for neuromodulation in addiction treatment. Am. J. Psychiatry 181, 100–114 (2024).

Article 
PubMed 

Google Scholar 

Lissemore, J. I. et al. Brain serotonin synthesis capacity in obsessive-compulsive disorder: effects of cognitive behavioral therapy and sertraline. Transl. Psychiatry 8, 82 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Rodriguez, C. I. et al. In vivo effects of ketamine on glutamate-glutamine and gamma-aminobutyric acid in obsessive-compulsive disorder: proof of concept. Psychiatry Res. 233, 141–147 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Navarro, S. V., Gutierrez-Ferre, V., Flores, P. & Moreno, M. Activation of serotonin 5-HT2A receptors inhibits high compulsive drinking on schedule-induced polydipsia. Psychopharmacology 232, 683–697 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Hogg, S. & Dalvi, A. Acceleration of onset of action in schedule-induced polydipsia: combinations of SSRI and 5-HT1A and 5-HT1B receptor antagonists. Pharmacol. Biochem. Behav. 77, 69–75 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Williams, D. R. & Barry, H. III Counter conditioning in an operant conflict situation. J. Comp. Physiol. Psychol. 61, 154–156 (1966).

Article 
CAS 
PubMed 

Google Scholar 

Pearce, J. M. & Dickinson, A. Pavlovian counterconditioning: changing the suppressive properties of shock by association with food. J. Exp. Psychol. Anim. Behav. Process. 1, 170–177 (1975).

Article 
CAS 
PubMed 

Google Scholar 

Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Pessiglione, M. & Delgado, M. R. The good, the bad and the brain: neural correlates of appetitive and aversive values underlying decision making. Curr. Opin. Behav. Sci. 5, 78–84 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Strigo, I. A. & Craig, A. D. Interoception, homeostatic emotions and sympathovagal balance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20160010 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lipton, D. M., Gonzales, B. J. & Citri, A. Dorsal striatal circuits for habits, compulsions and addictions. Front. Syst. Neurosci. 13, 28 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Brett, M., Leff, A. P. & Rorden, C. Ashburner. Spatial normalization of brain images with focal lesions using cost function masking. J. Neuroimage 14, 486–500 (2001).

Article 
CAS 

Google Scholar 

Pascoli, V., Terrier, J., Hiver, A. & Luscher, C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88, 1054–1066 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Goodman, W. K. et al. The Yale–Brown obsessive compulsive scale. i. Development, use, and reliability. Arch. Gen. Psychiatry 46, 1006–1011 (1989).

Article 
CAS 
PubMed 

Google Scholar 

Winchel, R. M. et al. The Psychiatric Institute Trichotillomania Scale (PITS). Psychopharmacol. Bull. 28, 463–476 (1992).

CAS 
PubMed 

Google Scholar 

Cavanna, A. E. et al. The Gilles de la Tourette syndrome-quality of life scale (GTS-QOL) development and validation. Neurology 71, 1410–1416 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Kim, S. W., Grant, J. E., Potenza, M. N., Blanco, C. & Hollander, E. The Gambling Symptom Assessment Scale (G-SAS): a reliability and validity study. Psychiatry Res. 166, 76–84 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar 

Franken, I. H. A., Hendriks, V. M. & van den Brink, W. Obsessive compulsive drug use scale. APA PsycTests https://doi.org/10.1037/t18284-000 (2002).

Lam, K. S. & Aman, M. G. The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. J. Autism Dev. Disord. 37, 855–866 (2007).

Article 
PubMed 

Google Scholar 

Kagan, D. M. & Squires, R. L. in Measures for Clinical Practice and Research: A Sourcebook 4th edn, Vol. 1 (eds Fischer, J. & Corcoran, K.) 500–501 (Oxford Univ. Press, 2007).

Moon, S. J. et al. Psychometric properties of the internet addiction test: a systematic review and meta-analysis. Cyberpsychol. Behav. Soc. Netw. 21, 473–484 (2018).

Article 
PubMed 

Google Scholar 

Schut, A. J., Castonguay, L. G. & Borkovec, T. D. Compulsive checking behaviors in generalized anxiety disorder. J. Clin. Psychol. 57, 705–715 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Nyatsanza, S. et al. A study of stereotypic behaviours in Alzheimer’s disease and frontal and temporal variant frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 74, 1398–1402 (2003).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sanavio, E. Obsessions and compulsions: the Padua inventory. Behav. Res. Ther. 26, 169–177 (1988).

Article 
CAS 
PubMed 

Google Scholar 

Burns, G. L., Keortge, S. G., Formea, G. M. & Sternberger, L. G. Revision of the Padua Inventory of obsessive compulsive disorder symptoms: distinctions between worry, obsessions, and compulsions. Behav. Res. Ther. 34, 163–173 (1996).

Article 
CAS 
PubMed 

Google Scholar 

Foa, E. B. et al. The obsessive-compulsive inventory: development and validation of a short version. Psychol. Assess. 14, 485–496 (2002).

Article 
PubMed 

Google Scholar 

Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305 (2016). An important article that links a range of subjective self-report questionnaires to latent constructs including compulsive behaviour and intrusive thought and, in turn, to objective measures of the balance between model-based and model-free behaviour.

Article 
PubMed 
PubMed Central 

Google Scholar 

Chamberlain, S. R., Leppink, E. W., Redden, S. A. & Grant, J. E. Are obsessive — compulsive symptoms impulsive, compulsive or both? Compr. Psychiatry 68, 111–118 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Burton, C. L. et al. Heritability of obsessive-compulsive trait dimensions in youth from the general population. Transl. Psychiatry https://doi.org/10.1038/s41398-018-0249-9 (2018).



Source link

Share.
Leave A Reply