Mitchell, K. S. et al. Binge eating disorder: a symptom-level investigation of genetic and environmental influences on liability. Psychol. Med. 40, 1899–1906 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Reichborn-Kjennerud, T., Bulik, C. M., Tambs, K. & Harris, J. R. Genetic and environmental influences on binge eating in the absence of compensatory behaviors: a population-based twin study. Int. J. Eat. Disord. 36, 307–314 (2004).

Article 
PubMed 

Google Scholar 

Udo, T. & Grilo, C. M. Prevalence and correlates of DSM-5-defined eating disorders in a nationally representative sample of U.S. adults. Biol. Psychiatry 84, 345–354 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Brownley, K. A. et al. Binge-eating disorder in adults: a systematic review and meta-analysis. Ann. Intern. Med. 165, 409–420 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wonderlich, S. A., Gordon, K. H., Mitchell, J. E., Crosby, R. D. & Engel, S. G. The validity and clinical utility of binge eating disorder. Int. J. Eat. Disord. 42, 687–705 (2009).

Article 
PubMed 

Google Scholar 

Bulik, C. M. et al. The binge eating genetics initiative (BEGIN): study protocol. BMC Psychiatry 20, 307 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Javaras, K. N. et al. Co-occurrence of binge eating disorder with psychiatric and medical disorders. J. Clin. Psychiatry 69, 266–273 (2008).

Article 
PubMed 

Google Scholar 

Javaras, K. N. et al. Familiality and heritability of binge eating disorder: results of a case-control family study and a twin study. Int. J. Eat. Disord. 41, 174–179 (2008).

Article 
PubMed 

Google Scholar 

Hübel, C. et al. One size does not fit all. Genomics differentiates among anorexia nervosa, bulimia nervosa, and binge-eating disorder. Int. J. Eat. Disord. 54, 785–793 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Guss, J. L., Kissileff, H. R., Devlin, M. J., Zimmerli, E. & Walsh, B. T. Binge size increases with body mass index in women with binge-eating disorder. Obes. Res. 10, 1021–1029 (2002).

Article 
PubMed 

Google Scholar 

Anderson, D. A., Williamson, D. A., Johnson, W. G. & Grieve, C. O. Validity of test meals for determining binge eating. Eat. Behav. 2, 105–112 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Kenardy, J. et al. Disordered eating behaviours in women with type 2 diabetes mellitus. Eat. Behav. 2, 183–192 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Hudson, J. I. et al. Longitudinal study of the diagnosis of components of the metabolic syndrome in individuals with binge-eating disorder. Am. J. Clin. Nutr. 91, 1568–1573 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hilbert, A. et al. Meta-analysis on the long-term effectiveness of psychological and medical treatments for binge-eating disorder. Int. J. Eat. Disord. 53, 1353–1376 (2020).

Article 
PubMed 

Google Scholar 

Peat, C. M. et al. Comparative effectiveness of treatments for binge-eating disorder: systematic review and network meta-analysis. Eur. Eat. Disord. Rev. 25, 317–328 (2017).

Article 
PubMed 

Google Scholar 

Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

Article 
PubMed 

Google Scholar 

de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).

Article 
PubMed 

Google Scholar 

Satterthwaite, T. D. et al. The Philadelphia Neurodevelopmental Cohort: a publicly available resource for the study of normal and abnormal brain development in youth. Neuroimage 124, 1115–1119 (2016).

Article 
PubMed 

Google Scholar 

Ollier, W., Sprosen, T. & Peakman, T. UK Biobank: from concept to reality. Pharmacogenomics 6, 639–646 (2005).

Article 
PubMed 

Google Scholar 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 5th edn (American Psychiatric Association Publishing, 2013).

Kessler, R. C. et al. The prevalence and correlates of binge eating disorder in the World Health Organization World Mental Health Surveys. Biol. Psychiatry 73, 904–914 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sonneville, K. R. & Lipson, S. K. Disparities in eating disorder diagnosis and treatment according to weight status, race/ethnicity, socioeconomic background, and sex among college students. Int. J. Eat. Disord. 51, 518–526 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Polimanti, R. et al. Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium. Mol. Psychiatry 25, 1673–1687 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bulik-Sullivan, B. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Turley, P. et al. Multi-ancestry meta-analysis yields novel genetic discoveries and ancestry-specific associations. Preprint at bioRxiv https://doi.org/10.1101/2021.04.23.441003 (2021).

Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the ‘Sum of Single Effects’ model. PLoS Genet. 18, e1010299 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Burstein, D. et al. Detecting and adjusting for hidden biases due to phenotype misclassification in genome-wide association studies. Preprint at medRxiv https://doi.org/10.1101/2023.01.17.23284670 (2023).

Genovese, C. R., Roeder, K. & Wasserman, L. False discovery control with p-value weighting. Biometrika 93, 509–524 (2006).

Article 

Google Scholar 

Karlsson Linnér, R. et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat. Neurosci. 24, 1367–1376 (2021).

Article 
PubMed 

Google Scholar 

Williams, C. et al. Guidelines for evaluating the comparability of down-sampled GWAS summary statistics. Preprint at bioRxiv https://doi.org/10.1101/2023.03.21.533641 (2023).

Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.244293 (2020).

Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bell, S. et al. A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun. Biol. 4, 156 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tanimura, N. et al. GATA/heme multi-omics reveals a trace metal-dependent cellular differentiation mechanism. Dev. Cell 46, 581–594.e4 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Domcke, S. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

An, S. J., Kim, T. J. & Yoon, B.-W. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J. Stroke 19, 3–10 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Stunkard, A. J. & Allison, K. C. Binge eating disorder: disorder or marker? Int. J. Eat. Disord. 34 (Suppl.), S107–S116 (2003).

Article 
PubMed 

Google Scholar 

Hinckley, J. D. et al. Quantitative trait locus linkage analysis in a large Amish pedigree identifies novel candidate loci for erythrocyte traits. Mol. Genet. Genom. Med. 1, 131–141 (2013).

Article 

Google Scholar 

Galmozzi, A. et al. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature 576, 138–142 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Borgna-Pignatti, C. & Zanella, S. Pica as a manifestation of iron deficiency. Expert Rev. Hematol. 9, 1075–1080 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Ersche, K. D. et al. Disrupted iron regulation in the brain and periphery in cocaine addiction. Transl. Psychiatry 7, e1040 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Barnea, R. et al. Trait and state binge eating predispose towards cocaine craving. Addict. Biol. 22, 163–171 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Succurro, E. et al. Obese patients with a binge eating disorder have an unfavorable metabolic and inflammatory profile. Medicine 94, e2098 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Al-Massadi, O. et al. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat. Rev. Endocrinol. 17, 745–755 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Noble, E. E. et al. Hypothalamus–hippocampus circuitry regulates impulsivity via melanin-concentrating hormone. Nat. Commun. 10, 4923 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Harrington, K. M. et al. Gender differences in demographic and health characteristics of the Million Veteran Program cohort. Women’s Health Issues 29 (Suppl. 1), S56–S66 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gelernter, J. et al. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat. Neurosci. 22, 1394–1401 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

1000 Genomes Project Consortium An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

Article 

Google Scholar 

Karcher, N. R. & Barch, D. M. The ABCD study: understanding the development of risk for mental and physical health outcomes. Neuropsychopharmacology 46, 131–142 (2021).

Article 
PubMed 

Google Scholar 

Wu, P. et al. Mapping ICD-10 and ICD-10-CM codes to phecodes: workflow development and initial evaluation. JMIR Med. Inform. 7, e14325 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

1000 Genomes Project Consortium A global reference for human genetic variation. Nature 526, 68–74 (2015).

Article 

Google Scholar 

Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bigdeli, T. B. et al. A simple yet accurate correction for winner’s curse can predict signals discovered in much larger genome scans. Bioinformatics 32, 2598–2603 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. B 82, 1273–1300 (2020).

Article 

Google Scholar 

Denny, J. C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 31, 1102–1110 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Churchhouse, C. & Neale, B. Rapid GWAS of Thousands of Phenotypes for 337,000 Samples in the UK Biobank http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank (Biobank, 2017).

Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Schilder, B. M., Humphrey, J. & Raj, T. echolocatoR: an automated end-to-end statistical and functional genomic fine-mapping pipeline. Bioinformatics 38, 536–539 (2021).

Article 
PubMed Central 

Google Scholar 



Source link

Share.
Leave A Reply