John OP, Gross JJ (eds). Handbook of Emotion Regulation. New York:The Guilford Press; 2007.

Kobylinska D, Kusev P. Flexible Emotion Regulation: How Situational Demands and Individual Differences Influence the Effectiveness of Regulatory Strategies. Front Psychol. 2019;10:72.

PubMed Central 
PubMed 

Google Scholar 

Lazarus RS, Folkman S. Stress, appraisal, and coping. New York: Springer; 1984.

Gross JJ. Emotion regulation: Past, present, future. Cogn Emot. 1999;13:551–73.

Google Scholar 

Gross JJ, John OP. Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. J Pers Soc Psychol. 2003;85:348–62.

PubMed 

Google Scholar 

Bonanno GA, Burton CL. Regulatory Flexibility: An Individual Differences Perspective on Coping and Emotion Regulation. Perspect Psychol Sci. 2013;8:591–612.

PubMed 

Google Scholar 

Ray C, Lindop J, Gibson S. The concept of coping. Psychol Med. 1982;12:385–95.

CAS 
PubMed 

Google Scholar 

Mohiyeddini C, Semple S. Displacement behaviour regulates the experience of stress in men. Stress. 2013;16:163–71.

PubMed 

Google Scholar 

Mohiyeddini C, Bauer S, Semple S. Public self-consciousness moderates the link between displacement behaviour and experience of stress in women. Stress. 2013;16:384–92.

PubMed 

Google Scholar 

Tugade MM, Fredrickson BL. Regulation of Positive Emotions: Emotion Regulation Strategies that Promote Resilience. J Happiness Stud. 2007;8:311–33.

Google Scholar 

Mayordomo T, Viguer P, Sales A, Satorres E, Meléndez JC. Resilience and Coping as Predictors of Well-Being in Adults. J Psychol. 2016;150:809–21.

PubMed 

Google Scholar 

Dantzer R, Mormede P. Pituitary-adrenal consequences of adjunctive activities in pigs. Horm Behav. 1981;15:386–95.

CAS 
PubMed 

Google Scholar 

Tazi A, Dantzer R, Mormede P, Le Moal M. Pituitary-adrenal correlates of schedule-induced polydipsia and wheel running in rats. Behav Brain Res. 1986;19:249–56.

CAS 
PubMed 

Google Scholar 

Brett LP, Levine S. Schedule-induced polydipsia suppresses pituitary-adrenal activity in rats. J Comp Physiol Psychol. 1979;93:946–56.

CAS 
PubMed 

Google Scholar 

Mittleman G, Jones GH, Robbins TW. The relationship between schedule-induced polydipsia and pituitary-adrenal activity: pharmacological and behavioral manipulations. Behav Brain Res. 1988;28:315–24.

CAS 
PubMed 

Google Scholar 

Falk J. Production of polydipsia in normal rats by an intermittent food schedule. Science. 1961;133:195–6.

CAS 
PubMed 

Google Scholar 

Killeen PR, Hanson SJ, Osborne SR. Arousal: its genesis and manifestation as response rate. Psychol Rev. 1978;85:571–81.

CAS 
PubMed 

Google Scholar 

Levine S, Weinberg J, Brett LP. Inhibition of pituitary-adrenal activity as a consequence of consummatory behavior. Psychoneuroendocrinology. 1979;4:275–86.

CAS 
PubMed 

Google Scholar 

Lopez-Grancha M, Lopez-Crespo G, Venero C, Canadas F, Sanchez-Santed F, Sandi C, et al. Differences in corticosterone level due to inter-food interval length: implications for schedule-induced polydipsia. Horm Behav. 2006;49:166–72.

CAS 
PubMed 

Google Scholar 

Levine R, Levine S. Role of the pituitary-adrenal hormones in the acquisition of schedule-induced polydipsia. Behav Neurosci. 1989;103:621–37.

CAS 
PubMed 

Google Scholar 

Dantzer R, Terlouw C, Mormede P, Le Moal M. Schedule-induced polydipsia experience decreases plasma corticosterone levels but increases plasma prolactin levels. Physiol Behav. 1988;43:275–9.

CAS 
PubMed 

Google Scholar 

Horwood S, Anglim J. Problematic smartphone usage and subjective and psychological well-being. Comput Hum Behav. 2019;97:44–50.

Google Scholar 

Goodwin H, Haycraft E, Meyer C. The relationship between compulsive exercise and emotion regulation in adolescents. Br J Health Psychol. 2012;17:699–710.

PubMed 

Google Scholar 

Moritz S, Jahns AK, Schroder J, Berger T, Lincoln TM, Klein JP, et al. More adaptive versus less maladaptive coping: What is more predictive of symptom severity? Development of a new scale to investigate coping profiles across different psychopathological syndromes. J Affect Disord. 2016;191:300–7.

PubMed 

Google Scholar 

Lawrence LM, Elphinstone B. Coping associated with compulsive buying tendency. Stress Health. 2021;37:263–71.

PubMed 

Google Scholar 

Belin D, Daniel M, Lacoste J, Belin-Rauscent A, Bacconier M, Jaafari N. Insight: New vistas into an aetiological and phenomenological role in the psychopathology of obsessive compulsive disorders. Ann médico-psychologiques. 2011;169:420–5.

Google Scholar 

Whitehead MR, Suveg C. Difficulties in emotion regulation differentiate depressive and obsessive–compulsive symptoms and their co-occurrence. Anxiety, Stress, Coping. 2016;29:507–18.

PubMed 

Google Scholar 

Crisson JE, Keefe FJ. The relationship of locus of control to pain coping strategies and psychological distress in chronic pain patients. Pain. 1988;35:147–54.

PubMed 

Google Scholar 

Moore CF, Sabino V, Koob GF, Cottone P. Neuroscience of Compulsive Eating Behavior. Front Neurosci. 2017;11:469.

PubMed Central 
PubMed 

Google Scholar 

Lopez-Grancha M, Lopez-Crespo G, Sanchez-Amate MC, Flores P. Individual differences in schedule-induced polydipsia and the role of gabaergic and dopaminergic systems. Psychopharmacol (Berl). 2008;197:487–98.

CAS 

Google Scholar 

Belin-Rauscent A, Daniel ML, Puaud M, Jupp B, Sawiak S, Howett D, et al. From impulses to maladaptive actions: the insula is a neurobiological gate for the development of compulsive behavior. Mol Psychiatry. 2016;21:491–9.

CAS 
PubMed 

Google Scholar 

Yao N, Nazari N, Veiskarami HA, Griffiths MD. The role of healthy emotionality in the relationship between fear of COVID-19 and mental health problems: a cross-sectional study. Cogn Process. 2022;23:569–81.

PubMed Central 
PubMed 

Google Scholar 

Waugh CE, Leslie-Miller CJ, Cole VT. Coping with COVID-19: the efficacy of disengagement for coping with the chronic stress of a pandemic. Anxiety Stress Coping. 2023;36:52–66.

Koole SL, Rothermund K. Coping with COVID-19: Insights from cognition and emotion research. Cogn Emot. 2022;36:1–8.

PubMed 

Google Scholar 

Dimanova P, Borbas R, Schnider CB, Fehlbaum LV, Raschle NM. Prefrontal Cortical Thickness, Emotion Regulation Strategy use and Covid-19 Mental Health. Soc Cogn Affect Neurosci. 2022;17:877–89.

PubMed Central 
PubMed 

Google Scholar 

Stanton R, To QG, Khalesi S, Williams SL, Alley SJ, Thwaite TL, et al. Depression, Anxiety and Stress during COVID-19: Associations with Changes in Physical Activity, Sleep, Tobacco and Alcohol Use in Australian Adults. Int J Environ Res Public Health. 2020;17:4065.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Ramalho R. Alcohol consumption and alcohol-related problems during the COVID-19 pandemic: a narrative review. Australas Psychiatry. 2020;28:524–6. 1039856220943024

PubMed 

Google Scholar 

Neill E, Meyer D, Toh WL, van Rheenen TE, Phillipou A, Tan EJ, et al. Alcohol use in Australia during the early days of the COVID-19 pandemic: Initial results from the COLLATE project. Psychiatry Clin Neurosci. 2020;74:542–9.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Dubey MJ, Ghosh R, Chatterjee S, Biswas P, Chatterjee S, Dubey S. COVID-19 and addiction. Diabetes Metab Syndr. 2020;14:817–23.

PubMed Central 
PubMed 

Google Scholar 

Tartaglia S, Bergagna E. Alcohol consumption as a maladaptive coping strategy to face low life satisfaction. Drugs: Educ Prev Policy. 2020;27:306–11.

Google Scholar 

Khantzian EJ. The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am J Psychiatry. 1985;142:1259–64.

CAS 
PubMed 

Google Scholar 

Cooper ML, Frone MR, Russell M, Mudar P. Drinking to regulate positive and negative emotions: a motivational model of alcohol use. J Pers Soc Psychol. 1995;69:990–1005.

CAS 
PubMed 

Google Scholar 

Tice DM, Bratslavsky E, Baumeister RF. Emotional distress regulation takes precedence over impulse control: If you feel bad, do it! J Personal Soc Psychol. 2001;80:53–67.

CAS 

Google Scholar 

Weiss NH, Bold KW, Sullivan TP, Armeli S, Tennen H. Testing bidirectional associations among emotion regulation strategies and substance use: a daily diary study. Addiction. 2017;112:695–704.

PubMed Central 
PubMed 

Google Scholar 

Cavicchioli M, Kraslavski A, Movalli M, Maffei C, Ogliari A. The investigation of mechanisms underlying addictive behaviors: a case-control study. J Addict Dis. 2022;40:306–25.

Blevins CE, Abrantes AM, Stephens RS. Motivational pathways from antecedents of alcohol use to consequences: a structural model of using alcohol to cope with negative affect. Am J Drug Alcohol Abus. 2016;42:395–403.

Google Scholar 

Zeidner M, Saklofske D. Adaptive and maladaptive coping. Handbook of coping: Theory, research, applications. Oxford, England: John Wiley & Sons; 1996. p. 505–31.

Ramachandran A, Makhashvili N, Javakhishvili J, Karachevskyy A, Kharchenko N, Shpiker M, et al. Alcohol use among conflict-affected persons in Ukraine: risk factors, coping and access to mental health services. Eur J Public Health. 2019;29:1141–6.

PubMed 

Google Scholar 

Clay JM, Parker MO. Alcohol use and misuse during the COVID-19 pandemic: a potential public health crisis? Lancet Public Health. 2020;5:e259.

PubMed Central 
PubMed 

Google Scholar 

Koob GF, Powell P, White A. Addiction as a Coping Response: Hyperkatifeia, Deaths of Despair, and COVID-19. Am J Psychiatry. 2020;177:1031–7.

PubMed 

Google Scholar 

Spanagel R, Noori HR, Heilig M. Stress and alcohol interactions: animal studies and clinical significance. Trends Neurosci. 2014;37:219–27.

CAS 
PubMed 

Google Scholar 

Fouyssac M, Puaud M, Ducret E, Marti-Prats L, Vanhille N, Ansquer S, et al. Environment-dependent behavioral traits and experiential factors shape addiction vulnerability. Eur J Neurosci. 2021;53:1794–808.

CAS 
PubMed 

Google Scholar 

Clay JM, Parker MO. The role of stress-reactivity, stress-recovery and risky decision-making in psychosocial stress-induced alcohol consumption in social drinkers. Psychopharmacol (Berl). 2018;235:3243–57.

CAS 

Google Scholar 

Khantzian EJ. Addiction as a self-regulation disorder and the role of self-medication. Addiction. 2013;108:668–9.

PubMed 

Google Scholar 

Giuliano C, Puaud M, Cardinal RN, Belin D, Everitt BJ. Individual differences in the engagement of habitual control over alcohol seeking predict the development of compulsive alcohol seeking and drinking. Addict Biol. 2021;26:e13041.

PubMed 

Google Scholar 

Giuliano C, Belin D, Everitt BJ. Compulsive Alcohol Seeking Results from a Failure to Disengage Dorsolateral Striatal Control over Behavior. J Neurosci. 2019;39:1744–54.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Lipton DM, Gonzales BJ, Citri A. Dorsal Striatal Circuits for Habits, Compulsions and Addictions. Front Syst Neurosci. 2019;13:28.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Li TK, Spanagel R, Colombo G, McBride WJ, Porrino LJ, Suzuki T, et al. Alcohol reinforcement and voluntary ethanol consumption. Alcohol Clin Exp Res. 2001;25:117S–126S.

CAS 
PubMed 

Google Scholar 

Vollstadt-Klein S, Wichert S, Rabinstein J, Buhler M, Klein O, Ende G, et al. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction. 2010;105:1741–9.

PubMed 

Google Scholar 

Robbins TW, Koob GF. Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature. 1980;285:409–12.

CAS 
PubMed 

Google Scholar 

Robbins TW, Roberts DC, Koob GF. Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens. J Pharm Exp Ther. 1983;224:662–73.

CAS 

Google Scholar 

Ibias J, Soria-Molinillo E, Kastanauskaite A, Orgaz C, DeFelipe J, Pellon R, et al. Schedule-induced polydipsia is associated with increased spine density in dorsolateral striatum neurons. Neuroscience. 2015;300:238–45.

CAS 
PubMed 

Google Scholar 

Murray JE, Belin D, Everitt BJ. Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology. 2012;37:2456–66.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Corbit LH, Nie H, Janak PH. Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry. 2012;72:389–95.

PubMed Central 
PubMed 

Google Scholar 

Fouyssac M, Pena-Oliver Y, Puaud M, Lim NTY, Giuliano C, Everitt BJ, et al. Negative Urgency Exacerbates Relapse to Cocaine Seeking After Abstinence. Biol Psychiatry. 2022;91:1051–60.

CAS 
PubMed 

Google Scholar 

Hodebourg R, Murray JE, Fouyssac M, Puaud M, Everitt BJ, Belin D. Heroin seeking becomes dependent on dorsal striatal dopaminergic mechanisms and can be decreased by N-acetylcysteine. Eur J Neurosci. 2019;50:2036–44.

PubMed 

Google Scholar 

Murray JE, Belin-Rauscent A, Simon M, Giuliano C, Benoit-Marand M, Everitt BJ, et al. Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat Commun. 2015;6:10088.

CAS 
PubMed 

Google Scholar 

Vanderschuren LJ, Di Ciano P, Everitt BJ. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci. 2005;25:8665–70.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Zapata A, Minney VL, Shippenberg TS. Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci. 2010;30:15457–63.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Belin D, Belin-Rauscent A, Murray JE, Everitt BJ. Addiction: failure of control over maladaptive incentive habits. Curr Opin Neurobiol. 2013;23:564–72.

CAS 
PubMed 

Google Scholar 

Marti-Prats L, Belin-Rauscent A, Fouyssac M, Puaud M, Cocker PJ, Everitt BJ, et al. Baclofen decreases compulsive alcohol drinking in rats characterized by reduced levels of GAT-3 in the central amygdala. Addict Biol. 2021;26:e13011.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Ansquer S, Belin-Rauscent A, Dugast E, Duran T, Benatru I, Mar AC, et al. Atomoxetine decreases vulnerability to develop compulsivity in high impulsive rats. Biol Psychiatry. 2014;75:825–32.

CAS 
PubMed 

Google Scholar 

Pellon R, Ruiz A, Moreno M, Claro F, Ambrosio E, Flores P. Individual differences in schedule-induced polydipsia: neuroanatomical dopamine divergences. Behav Brain Res. 2011;217:195–201.

CAS 
PubMed 

Google Scholar 

Moreno M, Gutierrez-Ferre VE, Ruedas L, Campa L, Sunol C, Flores P. Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacol (Berl). 2012;219:661–72.

CAS 

Google Scholar 

Moreno M, Flores P. Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases. Psychopharmacol (Berl). 2012;219:647–59.

CAS 

Google Scholar 

Suzdak PD, Paul SM. Ethanol stimulates GABA receptor-mediated Cl- ion flux in vitro: possible relationship to the anxiolytic and intoxicating actions of alcohol. Psychopharmacol Bull. 1987;23:445–51.

CAS 
PubMed 

Google Scholar 

Velazquez-Sanchez C, Muresan L, Marti-Prats L, Belin D. The development of compulsive coping behaviour is associated with a downregulation of Arc in a Locus Coeruleus neuronal ensemble. Neuropsychopharmacology. 2023;48:653–63.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Fouyssac M, Puaud M, Ducret E, Marti-Prats L, Vanhille N, Ansquer S et al. Environment-dependent behavioral traits and experiential factors shape addiction vulnerability. Eur J Neurosci. 2021;53:1794–808.

Killeen PR, Pellon R. Adjunctive behaviors are operants. Learn Behav. 2013;41:1–24.

PubMed 

Google Scholar 

Platt B, Beyer CE, Schechter LE, Rosenzweig-Lipson S. Schedule-induced polydipsia: a rat model of obsessive-compulsive disorder. Curr Protoc Neurosci. 2008; Chapter 9: Unit 9 27 https://doi.org/10.1002/0471142301.ns0927s43.

Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R. Selective serotonin re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacol (Berl). 1993;112:195–8.

CAS 

Google Scholar 

Navarro SV, Gutierrez-Ferre V, Flores P, Moreno M. Activation of serotonin 5-HT2A receptors inhibits high compulsive drinking on schedule-induced polydipsia. Psychopharmacol (Berl). 2015;232:683–97.

CAS 

Google Scholar 

Koob G. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology. 2009;56:18–31.

MathSciNet 
CAS 
PubMed 

Google Scholar 

Ford MM, Steele AM, McCracken AD, Finn DA, Grant KA. The relationship between adjunctive drinking, blood ethanol concentration and plasma corticosterone across fixed-time intervals of food delivery in two inbred mouse strains. Psychoneuroendocrinology. 2013;38:2598–610.

CAS 
PubMed 

Google Scholar 

Meisch RA. The function of schedule-induced polydipsia in establishing ethanol as a positive reinforcer. Pharm Rev. 1975;27:465–73.

CAS 
PubMed 

Google Scholar 

Ibias J, Pellon R. Schedule-induced polydipsia in the spontaneously hypertensive rat and its relation to impulsive behaviour. Behav Brain Res. 2011;223:58–69.

PubMed 

Google Scholar 

Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7:464–76.

CAS 
PubMed 

Google Scholar 

Yin HH, Knowlton BJ, Balleine BW. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci. 2004;19:181–9.

PubMed 

Google Scholar 

Dickinson A. Actions and Habits: The Development of Behavioural Autonomy. Philos Trans R Soc Lond. 1985;B 308:67–78.

Google Scholar 

Colotla VA. Adjunctive polydipsia as a model of alcoholism. Neurosci Biobehav Rev. 1981;5:335–42.

CAS 
PubMed 

Google Scholar 

Guinle MIB, Sinha R. The Role of Stress, Trauma, and Negative Affect in Alcohol Misuse and Alcohol Use Disorder in Women. Alcohol Res. 2020;40:05.

PubMed Central 
PubMed 

Google Scholar 

Temmen CD, Crockett LJ. Relations of Stress and Drinking Motives to Young Adult Alcohol Misuse: Variations by Gender. J Youth Adolesc. 2020;49:907–20.

PubMed 

Google Scholar 

Katovic NM, Gresack JE, Spear LP. Schedule-induced polydipsia: gender-specific effects and consequences of prenatal cocaine and postnatal handling. Pharm Biochem Behav. 1999;64:695–704.

CAS 

Google Scholar 

Stohr T, Szuran T, Welzl H, Pliska V, Feldon J, Pryce CR. Lewis/Fischer rat strain differences in endocrine and behavioural responses to environmental challenge. Pharm Biochem Behav. 2000;67:809–19.

CAS 

Google Scholar 

Martin JR, Baettig K. Schedule induced ethanol polydipsia in psychogenetically selected lines of rats. Pharm Biochem Behav. 1981;14:857–62.

CAS 

Google Scholar 

Ahmadi L, Goldman MB. Primary polydipsia: Update. Best Pr Res Clin Endocrinol Metab. 2020;34:101469.

CAS 

Google Scholar 

Ibias J, Pellon R, Sanabria F. A microstructural analysis of schedule-induced polydipsia reveals incentive-induced hyperactivity in an animal model of ADHD. Behav Brain Res. 2015;278:417–23.

CAS 
PubMed 

Google Scholar 

Alvarez B, Ibias J, Pellon R. Reinforcement of schedule-induced drinking in rats by lick-contingent shortening of food delivery. Learn Behav. 2016;44:329–39.

PubMed 

Google Scholar 

Schulz A, Vögele C. Interoception and stress. Front Psychol. 2015;6:993.

PubMed Central 
PubMed 

Google Scholar 

Cole BJ, Koob GF. Corticotropin-releasing factor and schedule-induced polydipsia. Pharm Biochem Behav. 1994;47:393–8.

CAS 

Google Scholar 

Liu YP, Wang HC, Tseng CJ, Tang HS, Yin TH, Tung CS. Effects of amphetamine on schedule-induced polydipsia. Chin J Physiol. 2005;48:176–86.

CAS 
PubMed 

Google Scholar 

Dickinson A, Dawson GR. Incentive learning and the motivational control of instrumental performance. Q J ExperimentalPsychol. 1989;41:99–112.

Google Scholar 

Belin D, Everitt BJ. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron. 2008;57:432–41.

CAS 
PubMed 

Google Scholar 

Mittleman G, Whishaw IQ, Jones GH, Koch M, Robbins TW. Cortical, hippocampal, and striatal mediation of schedule-induced behaviors. Behav Neurosci. 1990;104:399–409.

CAS 
PubMed 

Google Scholar 

Wallace M, Singer G, Finlay J, Gibson S. The effect of 6-OHDA lesions of the nucleus accumbens septum on schedule-induced drinking, wheelrunning and corticosterone levels in the rat. Pharm Biochem Behav. 1983;18:129–36.

CAS 

Google Scholar 

Koob GF, Riley SJ, Smith SC, Robbins TW. Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol. 1978;92:917–27.

CAS 
PubMed 

Google Scholar 

Weissenborn R, Blaha CD, Winn P, Phillips AG. Schedule-induced polydipsia and the nucleus accumbens: electrochemical measurements of dopamine efflux and effects of excitotoxic lesions in the core. Behav Brain Res. 1996;75:147–58.

CAS 
PubMed 

Google Scholar 

Mittleman G, Call SB, Cockroft JL, Goldowitz D, Matthews DB, Blaha CD. Dopamine dynamics associated with, and resulting from, schedule-induced alcohol self-administration: analyses in dopamine transporter knockout mice. Alcohol. 2011;45:325–39.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Leo D, Sukhanov I, Zoratto F, Illiano P, Caffino L, Sanna F, et al. Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J Neurosci. 2018;38:1959–72.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Jones GH, Hooks MS, Juncos JL, Justice JB Jr. Effects of cocaine microinjections into the nucleus accumbens and medial prefrontal cortex on schedule-induced behaviour: comparison with systemic cocaine administration. Psychopharmacol (Berl). 1994;115:375–82.

CAS 

Google Scholar 

Nelson A, Killcross S. Amphetamine exposure enhances habit formation. J Neurosci. 2006;26:3805–12.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Hawken ER, Beninger RJ. The amphetamine sensitization model of schizophrenia symptoms and its effect on schedule-induced polydipsia in the rat. Psychopharmacol (Berl). 2014;231:2001–8.

CAS 

Google Scholar 

Murray RM, Lappin J, Di Forti M. Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsychopharmacol. 2008;18:S129–134.

CAS 
PubMed 

Google Scholar 

Robbins TW, Costa RM. Habits. Curr Biol. 2017;27:R1200–R1206.

CAS 
PubMed 

Google Scholar 

Gregory JG, Hawken ER, Banasikowski TJ, Dumont EC, Beninger RJ. A response strategy predicts acquisition of schedule-induced polydipsia in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2015;61:37–43.

PubMed 

Google Scholar 

Merchan A, Mora S, Gago B, Rodriguez-Ortega E, Fernandez-Teruel A, Puga JL, et al. Excessive habit formation in schedule-induced polydipsia: Microstructural analysis of licking among rat strains and involvement of the orbitofrontal cortex. Genes Brain Behav. 2019;18:e12489.

CAS 
PubMed 

Google Scholar 

Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev. 2005;29:399–419.

CAS 
PubMed 

Google Scholar 

Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9.

CAS 
PubMed 

Google Scholar 

Gillan CM, Morein-Zamir S, Urcelay GP, Sule A, Voon V, Apergis-Schoute AM, et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol Psychiatry. 2014;75:631–8.

PubMed Central 
PubMed 

Google Scholar 

Voon V, Derbyshire K, Ruck C, Irvine MA, Worbe Y, Enander J, et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry. 2015;20:345–52.

CAS 
PubMed 

Google Scholar 

Schwabe L, Wolf OT. Stress prompts habit behavior in humans. J Neurosci. 2009;29:7191–8.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Smeets T, van Ruitenbeek P, Hartogsveld B, Quaedflieg C. Stress-induced reliance on habitual behavior is moderated by cortisol reactivity. Brain Cogn. 2019;133:60–71.

CAS 
PubMed 

Google Scholar 

Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science. 2009;325:621–5.

CAS 
PubMed 

Google Scholar 

Zorrilla EP, Koob GF. Impulsivity Derived From the Dark Side: Neurocircuits That Contribute to Negative Urgency. Front Behav Neurosci. 2019;13:136.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Packard MG. Anxiety, cognition, and habit: a multiple memory systems perspective. Brain Res. 2009;1293:121–8.

CAS 
PubMed 

Google Scholar 

Merchan A, Sanchez-Kuhn A, Prados-Pardo A, Gago B, Sanchez-Santed F, Moreno M, et al. Behavioral and biological markers for predicting compulsive-like drinking in schedule-induced polydipsia. Prog Neuropsychopharmacol Biol Psychiatry. 2019;93:149–60.

CAS 
PubMed 

Google Scholar 

Navarro SV, Alvarez R, Colomina MT, Sanchez-Santed F, Flores P, Moreno M. Behavioral Biomarkers of Schizophrenia in High Drinker Rats: A Potential Endophenotype of Compulsive Neuropsychiatric Disorders. Schizophr Bull. 2017;43:778–87.

PubMed 

Google Scholar 

Gremel CM, Lovinger DM. Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs. Genes Brain Behav. 2017;16:71–85.

CAS 
PubMed 

Google Scholar 

Salinas AG, Mateo Y, Carlson VCC, Stinnett GS, Luo G, Seasholtz AF, et al. Long-term alcohol consumption alters dorsal striatal dopamine release and regulation by D2 dopamine receptors in rhesus macaques. Neuropsychopharmacology. 2021;46:1432–41.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci. 2004;24:3554–62.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Renteria R, Baltz ET, Gremel CM. Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits. Nat Commun. 2018;9:211.

PubMed Central 
PubMed 

Google Scholar 

Corbit LH, Janak PH. Habitual Alcohol Seeking: Neural Bases and Possible Relations to Alcohol Use Disorders. Alcohol Clin Exp Res. 2016;40:1380–9.

PubMed Central 
PubMed 

Google Scholar 

Barker JM, Corbit LH, Robinson DL, Gremel CM, Gonzales RA, Chandler LJ. Corticostriatal circuitry and habitual ethanol seeking. Alcohol. 2015;49:817–24.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Patton MH, Roberts BM, Lovinger DM, Mathur BN. Ethanol Disinhibits Dorsolateral Striatal Medium Spiny Neurons Through Activation of A Presynaptic Delta Opioid Receptor. Neuropsychopharmacology. 2016;41:1831–40.

CAS 
PubMed Central 
PubMed 

Google Scholar 

Wilcox MV, Cuzon Carlson VC, Sherazee N, Sprow GM, Bock R, Thiele TE, et al. Repeated binge-like ethanol drinking alters ethanol drinking patterns and depresses striatal GABAergic transmission. Neuropsychopharmacology. 2014;39:579–94.

CAS 
PubMed 

Google Scholar 

Koob GF. Negative reinforcement in drug addiction: the darkness within. Curr Opin Neurobiol. 2013;23:559–63.

CAS 
PubMed 

Google Scholar 

Hutcheson DM, Everitt BJ, Robbins TW, Dickinson A. The role of withdrawal in heroin addiction: enhances reward or promotes avoidance? Nat Neurosci. 2001;4:943–7.

CAS 
PubMed 

Google Scholar 

Breese GR, Chu K, Dayas CV, Funk D, Knapp DJ, Koob GF, et al. Stress enhancement of craving during sobriety: a risk for relapse. Alcohol Clin Exp Res. 2005;29:185–95.

PubMed Central 
PubMed 

Google Scholar 

Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24:97–129.

CAS 
PubMed 

Google Scholar 

Larimer ME, Palmer RS, Marlatt GA. Relapse prevention. An overview of Marlatt’s cognitive-behavioral model. Alcohol Res health : J Natl Inst Alcohol Abus Alcohol. 1999;23:151–60.

CAS 

Google Scholar 

Lowman C, Allen J, Stout RL, Group TRR. Replication and extension of Marlatt’s taxonomy of relapse precipitants: overview of procedures and results. Addiction. 1996;91:51–72.

Google Scholar 

Marlatt GA. Taxonomy of high-risk situations for alcohol relapse: evolution and development of a cognitive-behavioral model. Addiction. 1996;91:S37–49.

PubMed 

Google Scholar 

Wilson GT. Alcohol and anxiety. Behav Res Ther. 1988;26:369–81.

CAS 
PubMed 

Google Scholar 

Moberg CA, Curtin JJ. Alcohol selectively reduces anxiety but not fear: startle response during unpredictable versus predictable threat. J Abnorm Psychol. 2009;118:335–47.

PubMed Central 
PubMed 

Google Scholar 

Spanagel R, Montkowski A, Allingham K, Stohr T, Shoaib M, Holsboer F, et al. Anxiety: a potential predictor of vulnerability to the initiation of ethanol self-administration in rats. Psychopharmacol (Berl). 1995;122:369–73.

CAS 

Google Scholar 

George DT, Nutt DJ, Dwyer BA, Linnoila M. Alcoholism and panic disorder: is the comorbidity more than coincidence? Acta Psychiatr Scand. 1990;81:97–107.

CAS 
PubMed 

Google Scholar 

Pellon R, Ruiz A, Lamas E, Rodriguez C. Pharmacological analysis of the effects of benzodiazepines on punished schedule-induced polydipsia in rats. Behav Pharm. 2007;18:81–87.

CAS 

Google Scholar 

Balleine B. Instrumental performance following a shift in primary motivation depends on incentive learning. J Exp Psychol Anim Behav Process. 1992;18:236–50.

CAS 
PubMed 

Google Scholar 

Paxinos G, Watson C. The rat brain in stereotaxic coordinates, 7th ed. 7th edn. San Diego: Elesvier Academic Press; 2013.



Source link

Share.
Leave A Reply